AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electrochemically prepared coniferous leaf-like nickel black membrane for desalination by solar-thermal energy conversion

Dongmin Yue1,2( )Bingbing Li1,2De Sun1,2( )Hao Zhang1Meiling Liu1,2Jingtong Yu1,2
School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
Key Laboratory of Advanced Functional Polymer Membrane Materials of Jilin Province, Changchun 130012, China
Show Author Information

Graphical Abstract

A bionic nickel black solar-thermal conversion membrane with coniferous leaf-like structures for solar interfacial evaporation was constructed via electroplating method, which simultaneously possessed enhanced absorption of sunlight and salt resistance performance.

Abstract

The structures of the solar-thermal membranes always influence the performance of light absorption and salt resistance in desalination. Inspired by the hierarchical structure of the coniferous leaves with excellent sunlight absorption in frigid regions, a coniferous leaf-like nickel black (L-Ni) membrane for desalination by solar-thermal energy conversion was prepared through electroplating method under a constant voltage. The light trapping effect of coniferous leaf-like structure led to the light absorption enhanced to 92%, the evaporation rate improved to 1.38 kg·m−2·h−1, and the solar-vapor conversion efficiency of L-Ni membrane reaching up to 89.75% under 1 sun irradiation. The stability of the membrane was still excellent after 20 cycles desalination because the coniferous leaf-like structure could enhance the hydrophobicity (water contact angle: 152°) of the L-Ni membrane, and it was beneficial to salt resistance. The promising performance of L-Ni membrane with coniferous leaf-like structure provides a possibility to replace the noble metal solar-thermal conversion materials.

Electronic Supplementary Material

Video
12274_2023_5506_MOESM2_ESM.mp4
12274_2023_5506_MOESM3_ESM.mp4
Download File(s)
12274_2023_5506_MOESM1_ESM.pdf (1.8 MB)

References

[1]

Yang, Y. B.; Yang, X. D.; Liang, L.; Gao, Y. Y.; Cheng, H. Y.; Li, X. M.; Zou, M. C.; Ma, R. Z.; Yuan, Q.; Duan, X. F. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 2019, 364, 1057–1062.

[2]

Wang, Y. D.; Wu, X.; Wu, P.; Zhao, J. Y.; Yang, X. F.; Owens, G.; Xu, H. L. Enhancing solar steam generation using a highly thermally conductive evaporator support. Sci. Bull. 2021, 66, 2479–2488.

[3]

Gao, T.; Wu, X.; Wang, Y. D.; Owens, G.; Xu, H. L. A hollow and compressible 3D photothermal evaporator for highly efficient solar steam generation without energy loss. Solar RRL 2021, 5, 2100053.

[4]

Meng, S.; Zhao, X.; Tang, C. Y.; Yu, P.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. A bridge-arched and layer-structured hollow melamine foam/reduced graphene oxide composite with an enlarged evaporation area and superior thermal insulation for high-performance solar steam generation. J. Mater. Chem. A 2020, 8, 2701–2711.

[5]

Wu, X.; Gao, T.; Han, C. H.; Xu, J. S.; Owens, G.; Xu, H. L. A photothermal reservoir for highly efficient solar steam generation without bulk water. Sci. Bull. 2019, 64, 1625–1633.

[6]

Storer, D. P.; Phelps, J. L.; Wu, X.; Owens, G.; Khan, N. I.; Xu, H. L. Graphene and rice-straw-fiber-based 3D photothermal aerogels for highly efficient solar evaporation. ACS Appl. Mater. Interfaces 2020, 12, 15279–15287.

[7]

Wu, P.; Wu, X.; Wang, Y. D.; Xu, H. L.; Owens, G. Towards sustainable saline agriculture: Interfacial solar evaporation for simultaneous seawater desalination and saline soil remediation. Water Res. 2022, 212, 118099.

[8]

Chen, J. X.; Feng, J.; Li, Z. W.; Xu, P. P.; Wang, X. J.; Yin, W. W.; Wang, M. Z.; Ge, X. W.; Yin, Y. D. Space-confined seeded growth of black silver nanostructures for solar steam generation. Nano Lett. 2019, 19, 400–407.

[9]

Zhou, L.; Tan, Y. L.; Ji, D. X.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q. Q.; Yu, Z. F.; Zhu, J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2, e1501227.

[10]

Zhu, M. W.; Li, Y. J.; Chen, F. J.; Zhu, X. Y.; Dai, J. Q.; Li, Y. F.; Yang, Z.; Yan, X. J.; Song, J. W.; Wang, Y. B. et al. Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 2018, 8, 1701028.

[11]

Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393–398.

[12]

Xu, J. J.; Xu, F.; Qian, M.; Li, Z.; Sun, P.; Hong, Z. L.; Huang, F. Q. Copper nanodot-embedded graphene urchins of nearly full-spectrum solar absorption and extraordinary solar desalination. Nano Energy 2018, 53, 425–431.

[13]

Shi, Y.; Li, R. Y.; Jin, Y.; Zhuo, S. F.; Shi, L.; Chang, J.; Hong, S.; Ng, K. C.; Wang, P. A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2018, 2, 1171–1186.

[14]

Yi, L. C.; Ci, S. L.; Luo, S.; Shao, P.; Hou, Y.; Wen, Z. H. Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination. Nano Energy 2017, 41, 600–608.

[15]

Ye, M. M.; Jia, J.; Wu, Z. J.; Qian, C. X.; Chen, R.; O'Brien, P. G.; Sun, W.; Dong, Y. C.; Ozin, G. A. Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Adv. Energy Mater. 2017, 7, 1601811.

[16]

Guo, Y. H.; Zhou, X. Y.; Zhao, F.; Bae, J.; Rosenberger, B.; Yu, G. H. Synergistic energy nanoconfinement and water activation in hydrogels for efficient solar water desalination. ACS Nano 2019, 13, 7913–7919.

[17]

Li, Z. K.; Zheng, M.; Wei, N.; Lin, Y.; Chu, W. L.; Xu, R. Q.; Wang, H. H.; Tian, J.; Cui, H. Z. Broadband-absorbing WO3−x nanorod-decorated wood evaporator for highly efficient solar-driven interfacial steam generation. Sol. Energy Mater. Sol. Cells 2020, 205, 110254.

[18]

Zhu, L.; Sun, L.; Zhang, H.; Yu, D. F.; Aslan, H.; Zhao, J. G.; Li, Z. L.; Yu, M.; Besenbacher, F.; Sun, Y. Dual-phase molybdenum nitride nanorambutans for solar steam generation under one sun illumination. Nano Energy 2019, 57, 842–850.

[19]

Wu, X.; Robson, M. E.; Phelps, J. L.; Tan, J. S.; Shao, B.; Owens, G.; Xu, H. L. A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation. Nano Energy 2019, 56, 708–715.

[20]

Huang, W.; Su, P. W.; Cao, Y.; Li, C. C.; Chen, D. L.; Tian, X. L.; Su, Y. Q.; Qiao, B.; Tu, J. C.; Wang, X. H. Three-dimensional hierarchical CuxS-based evaporator for high-efficiency multifunctional solar distillation. Nano Energy 2020, 69, 104465.

[21]

Zong, L.; Li, M. J.; Li, C. X. Intensifying solar-thermal harvest of low-dimension biologic nanostructures for electric power and solar desalination. Nano Energy 2018, 50, 308–315.

[22]

Wang, K.; Huo, B. B.; Liu, F.; Zheng, Y. W.; Zhang, M. H.; Cui, L.; Liu, J. Q. In situ generation of carbonized polyaniline nanowires on thermally-treated and electrochemically-etched carbon fiber cloth for high efficient solar seawater desalination. Desalination 2020, 481, 114303.

[23]

Zhao, F.; Zhou, X. Y.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X. P.; Mendez, S.; Yang, R. G.; Qu, L. T.; Yu, G. H. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 2018, 13, 489–495.

[24]

Xu, N.; Hu, X. Z.; Xu, W. C.; Li, X. Q.; Zhou, L.; Zhu, S. N.; Zhu, J. Mushrooms as efficient solar steam-generation devices. Adv. Mater. 2017, 29, 1606762.

[25]

Zhang, H. T.; Li, L.; Jiang, B.; Zhang, Q.; Ma, J.; Tang, D. W.; Song, Y. C. Highly thermally insulated and superhydrophilic corn straw for efficient solar vapor generation. ACS Appl. Mater. Interfaces 2020, 12, 16503–16511.

[26]

Shan, X. L.; Zhao, A. Q.; Lin, Y. W.; Hu, Y. J.; Di, Y. S.; Liu, C. H.; Gan, Z. X. Low-cost, scalable, and reusable photothermal layers for highly efficient solar steam generation and versatile energy conversion. Adv. Sustainable Syst. 2020, 4, 1900153.

[27]

Seh, Z. W.; Liu, S. H.; Low, M.; Zhang, S. Y.; Liu, Z. L.; Mlayah, A.; Han, M. Y. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv. Mater. 2012, 24, 2310–2314.

[28]

Tao, P.; Ni, G.; Song, C. Y.; Shang, W.; Wu, J. B.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nat. Energy 2018, 3, 1031–1041.

[29]

Yang, Y. B.; Yang, X. D.; Fu, L. N.; Zou, M. C.; Cao, A. Y.; Du, Y. P.; Yuan, Q.; Yan, C. H. Two-dimensional flexible bilayer Janus membrane for advanced photothermal water desalination. ACS Energy Lett. 2018, 3, 1165–1171.

[30]

Zhou, L.; Zhuang, S. D.; He, C. Y.; Tan, Y. L.; Wang, Z. L.; Zhu, J. Self-assembled spectrum selective plasmonic absorbers with tunable bandwidth for solar energy conversion. Nano Energy 2017, 32, 195–200.

[31]

Politano, A.; Argurio, P.; Di Profio, G.; Sanna, V.; Cupolillo, A.; Chakraborty, S.; Arafat, H. A.; Curcio, E. Photothermal membrane distillation for seawater desalination. Adv. Mater. 2017, 29, 1603504.

[32]

Wang, S.; Fan, Y. K.; Wang, F.; Su, Y. N.; Zhou, X.; Zhu, Z. Q.; Sun, H. X.; Liang, W. D.; Li, A. Potentially scalable fabrication of salt-rejection evaporator based on electrogenerated polypyrrole-coated nickel foam for efficient solar steam generation. Desalination 2021, 505, 114982.

[33]

Wu, D. D.; Qu, D.; Jiang, W. S.; Chen, G.; An, L.; Zhuang, C. Q.; Sun, Z. C. Self-floating nanostructured Ni-NiOx/Ni foam for solar thermal water evaporation. J. Mater. Chem. A 2019, 7, 8485–8490.

[34]

Wang, X. J.; Hsieh, M. L.; Bur, J. A.; Lin, S. Y.; Narayanan, S. The role of nanostructure morphology of nickel-infused alumina on solar-thermal energy conversion. J. Opt. 2021, 23, 015101.

[35]

Munawar, K.; Perveen, F.; Shahid, M. M.; Basirun, W. J.; Misran, M. B.; Mazhar, M. Synthesis, characterization and computational study of an ilmenite-structured Ni3Mn3Ti6O18 thin film photoanode for solar water splitting. New J. Chem. 2019, 43, 11113–11124.

[36]

Song, C. Y.; Hao, L.; Zhang, B. Y.; Dong, Z. Y.; Tang, Q. Q.; Min, J. K.; Zhao, Q.; Niu, R.; Gong, J.; Tang, T. High-performance solar vapor generation of Ni/carbon nanomaterials by controlled carbonization of waste polypropylene. Sci. China Mater. 2020, 63, 779–793.

[37]

Qin, D. D.; Zhu, Y. J.; Yang, R. L.; Xiong, Z. C. A salt-resistant Janus evaporator assembled from ultralong hydroxyapatite nanowires and nickel oxide for efficient and recyclable solar desalination. Nanoscale 2020, 12, 6717–6728.

[38]

Shao, B.; Wang, Y. D.; Wu, X.; Lu, Y.; Yang, X. F.; Chen, G. Y.; Owens, G.; Xu, H. L. Stackable nickel-cobalt@polydopamine nanosheet based photothermal sponges for highly efficient solar steam generation. J. Mater. Chem. A 2020, 8, 11665–11673.

[39]

Xu, N.; Li, J. L.; Wang, Y.; Fang, C.; Li, X. Q.; Wang, Y. X.; Zhou, L.; Zhu, B.; Wu, Z.; Zhu, S. N. et al. A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Sci. Adv. 2019, 5, eaaw7013.

[40]

Xu, N.; Zhang, H. R.; Lin, Z. H.; Li, J. L.; Liu, G. L.; Li, X. Q.; Zhao, W.; Min, X. Z.; Yao, P. C.; Zhou, L. et al. A scalable fish-school inspired self-assembled particle system for solar-powered water-solute separation. Natl. Sci. Rev. 2021, 8, nwab065.

[41]

Dong, X. Y.; Si, Y.; Chen, C. J.; Ding, B.; Deng, H. B. Reed leaves inspired silica nanofibrous aerogels with parallel-arranged vessels for salt-resistant solar desalination. ACS Nano 2021, 15, 12256–12266.

[42]

Han, D. D.; Chen, Z. D.; Li, J. C.; Mao, J. W.; Jiao, Z. Z.; Wang, W.; Zhang, W.; Zhang, Y. L.; Sun, H. B. Airflow enhanced solar evaporation based on Janus graphene membranes with stable interfacial floatability. ACS Appl. Mater. Interfaces 2020, 12, 25435–25443.

[43]

Zhan, H. J.; Chen, J. F.; Zhao, H. Y.; Jiao, L.; Liu, J. W.; Yu, S. H. Biomimetic difunctional carbon-nanotube-based aerogels for efficient steam generation. ACS Appl. Nano Mater. 2020, 3, 4690–4698.

[44]

Jordan, D. N.; Smith, W. K. Simulated influence of leaf geometry on sunlight interception and photosynthesis in conifer needles. Tree Physiol. 1993, 13, 29–39.

[45]

Munakata, K.; Nonaka, T.; Ogaya, N.; Kanamori, M. Practical application for estimation of the crown density of conifers using LiDAR data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2010, 38, 705–709.

[46]

Li, N. B.; Yang, D. J.; Shao, Y.; Liu, Y. T.; Tang, J. B.; Yang, L. P.; Sun, T. Y.; Zhou, W. J.; Liu, H.; Xue, G. B. Nanostructured black aluminum prepared by laser direct writing as a high-performance plasmonic absorber for photothermal/electric conversion. ACS Appl. Mater. Interfaces 2021, 13, 4305–4315.

[47]

Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551.

[48]

Meng, F. Q.; Wang, Y. L.; Chen, Z.; Hu, J. L.; Lu, G.; Ma, W. Synthesis of CQDs@FeOOH nanoneedles with abundant active edges for efficient electro-catalytic degradation of levofloxacin: Degradation mechanism and toxicity assessment. Appl. Catal. B: Environ. 2021, 282, 119597.

[49]

Wang, S.; Xu, H. B.; Hao, T. T.; Xu, M.; Xue, J. Y.; Zhao, J. P., Li, Y. 3D conifer-like WO3 branched nanowire arrays electrode for boosting electrochromic-supercapacitor performance. Appl. Surf. Sci. 2022, 577, 151889.

[50]

Gnanamuthu, S. J.; Jeyakumar, S. J.; Punithavathy, I. K.; Prabhakar, P. C. J.; Suganya, M.; Usharani, K.; Balu, A. R. Properties of spray deposited nano needle structured Cu-doped Sn2S3 thin films towards photovoltaic applications. Optik 2016, 3999–4003.

[51]

Wang, H. Q.; Zhang, C.; Ji, X. J.; Yang, J. M.; Zhang, Z. H.; Ma, Y.; Zhang, Z. H.; Zhou, B.; Shen, J.; Du, A. Over 11 kg m−2 h−1 evaporation rate achieved by cooling metal-organic framework foam with pine needle-like hierarchical structures to subambient temperature. ACS Appl. Mater. Interfaces 2022, 14, 10257–10266.

[52]

Li, J. Z.; Shao, Z. C.; Zhang, X.; Tian, Y. W. The electroless nickel-plating on magnesium alloy using NiSO4·6H2O as the main salt. Surf. Coat. Technol. 2006, 200, 3010–3015.

[53]

Ma, L. G.; Zheng, M. J.; Liu, S. H.; Li, Q.; You, Y. X.; Wang, F. Z.; Ma, L.; Shen, W. Z. Synchronous exfoliation and assembly of graphene on 3D Ni(OH)2 for supercapacitors. Chem. Commun. 2016, 52, 13373–13376.

[54]

Grujicic, D.; Pesic, B. Electrochemical and AFM study of nickel nucleation mechanisms on vitreous carbon from ammonium sulfate solutions. Electrochim. Acta 2006, 51, 2678–2690.

[55]

Nakajima, K. Layer thickness calculation of In1−vGavAs grown by the source-current-controlled method-diffusion and electromigration limited growth. J. Cryst. Growth 1989, 98, 329–340.

[56]

Lou, Z. J.; Zhu, Z. L.; Jia-Shui; Liu, H.; Yang, G. J.; Wen, Y. Y.; Li, Y. Stray grain formation associated with constitutional supercooling during plasma re-melting of Ni-based single crystal superalloy based on temperature field simulation and actual substrate orientation. J. Alloys Compd. 2022, 890, 161865.

[57]

Pu, S. D.; Gong, C.; Gao, X. W.; Ning, Z. Y.; Yang, S. X.; Marie, J. J.; Liu, B. Y.; House, R. A.; Hartley, G. O.; Luo, J. et al. Current-density-dependent electroplating in Ca electrolytes: From globules to dendrites. ACS Energy Lett. 2020, 5, 2283–2290.

[58]
Jie, W. Q. Principle and Technology of Crystal Growth; Science Press: Beijing, 2010; pp 129–131.
[59]

Hunt, J. D.; Lu, S. Z. Numerical modeling of cellular/dendritic array growth: Spacing and structure predictions. Metall. Mater. Trans. A 1996, 27, 611–623.

[60]

Kurz, W.; Fisher, D. J. Dendrite growth at the limit of stability: Tip radius and spacing. Acta Metall. 1981, 29, 11–20.

[61]

Tang, W. J.; Sun, D.; Liu, S. H.; Li, B. B.; Sun, W. W.; Fu, J. W.; Li, B. J.; Hu, D. D.; Yu, J. T. One step electrochemical fabricating of the biomimetic graphene skins with superhydrophobicity and superoleophilicity for highly efficient oil-water separation. Sep. Purif. Technol. 2020, 236, 116293.

[62]
Wilcox, S. F.; Wilcox, F. T. Method to obtain a variety of surface colors by electroplating zinc nickel and nickel alloy oxides. U.S. Patent 6,800,190, Oct. 5, 2004.
[63]
Herdman, R. D.; Pearson, T.; Rowan, A. Zinc and zinc alloy electroplating additives and electroplating methods. U.S. Patent 7,109,375, Sep. 19, 2006.
[64]

Mandich, N. V.; Geduld, H. Understanding and troubleshooting decorative nickel electroplating systems-part III: Roughness, pitting, and burnt deposits. Metal Finish. 2002, 100, 38–46.

[65]

Ren, H. Y.; Tang, M.; Guan, B. L.; Wang, K. X.; Yang, J. W.; Wang, F. F.; Wang, M. Z.; Shan, J. Y.; Chen, Z. L.; Wei, D. et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 2017, 29, 170590.

[66]

Liu, J. N.; Cui, J. S.; Sun, J. H.; Liu, H.; Li, W.; Han, C.; Chen, Y. N.; Yang, G. C.; Shan, Y. P. Hierarchical nickel-vanadium nanohybrid with strong electron transfer for accelerated hydrogen evolution reaction. Appl. Surf. Sci. 2020, 528, 146982.

[67]

Sun, J. H.; Zhu, M. X.; Fan, M. M.; He, J.; Han, C.; Yang, G. C.; Shan, Y. P. Mo2C-Ni modified carbon microfibers as an effective electrocatalyst for hydrogen evolution reaction in acidic solution. J. Colloid Interface Sci. 2019, 543, 300–306.

[68]

Sun, J. H.; Liu, J. N.; Chen, H.; Han, X.; Wu, Y.; He, J.; Han, C.; Yang, G. C.; Shan, Y. P. Strongly coupled Mo2C and Ni nanoparticles with in-situ formed interfaces encapsulated by porous carbon nanofibers for efficient hydrogen evolution reaction under alkaline conditions. J. Colloid Interface Sci. 2020, 558, 100–105.

[69]

Oblonsky, L. J.; Devine, T. M. Surface enhanced Raman spectra from the films formed on nickel in the passive and transpassive regions. J. Electrochem. Soc. 1995, 142, 3677–3682.

[70]

Shan, W. J.; Luo, M. F.; Ying, P. L.; Shen, W. J.; Li, C. Reduction property and catalytic activity of Ce1−XNiXO2 mixed oxide catalysts for CH4 oxidation. Appl. Catal. A: Gen. 2003, 246, 1–9.

[71]

Chang, Y. H.; Hau, N. Y.; Liu, C.; Huang, Y. T.; Li, C. C.; Shih, K.; Feng, S. P. A short-range ordered-disordered transition of a NiOOH/Ni(OH)2 pair induces switchable wettability. Nanoscale 2014, 6, 15309–15315.

[72]

Zhang, F.; Li, Y. C.; Cai, H.; Liu, Q.; Tong, G. L. Processing nanocellulose foam into high-performance membranes for harvesting energy from nature. Carbohydr. Polym. 2020, 241, 116253.

[73]

Mascaretti, L.; Schirato, A.; Zbořil, R.; Kment, Š.; Schmuki, P.; Alabastri, A.; Naldoni, A. Solar steam generation on scalable ultrathin thermoplasmonic TiN nanocavity arrays. Nano Energy 2021, 83, 105828.

[74]

Zhang, L. L.; Xing, J.; Wen, X. L.; Chai, J. W.; Wang, S. J.; Xiong, Q. H. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination. Nanoscale 2017, 9, 12843–12849.

[75]

Cao, H. X.; Cui, T. L.; Wang, W. Y.; Li, S. L.; Tang, X. Y.; Wang, H. Y.; Zhu, G. Green-synthesizing Ag nanoparticles by watermelon peel extract and their application in solar-driven interfacial evaporation for seawater desalination. Mater. Res. Express 2020, 7, 045005.

[76]

Wu, D.; Zhao, C. X.; Xu, Y.; Zhang, X.; Yang, L. L.; Zhang, Y.; Gao, Z. D.; Song, Y. Y. Modulating solar energy harvesting on TiO2 nanochannel membranes by plasmonic nanoparticle assembly for desalination of contaminated seawater. ACS Appl. Nano Mater. 2020, 3, 10895–10904.

[77]

Xiao, C. H.; Liang, W. D.; Hasi, Q. M.; Chen, L. H.; He, J. X.; Liu, F.; Wang, C. J.; Sun, H. X.; Zhu, Z. Q.; Li, A. Ag/polypyrrole co-modified poly(ionic liquid)s hydrogels as efficient solar generators for desalination. Mater. Today Energy 2020, 16, 100417.

[78]

Chen, C. L.; Zhou, L.; Yu, J. Y.; Wang, Y. X.; Nie, S. M.; Zhu, S. N.; Zhu, J. Dual functional asymmetric plasmonic structures for solar water purification and pollution detection. Nano Energy 2018, 51, 451–456.

[79]

Xu, Y.; Ma, J. X.; Han, Y.; Xu, H. B.; Wang, Y.; Qi, D. P.; Wang, W. A simple and universal strategy to deposit Ag/polypyrrole on various substrates for enhanced interfacial solar evaporation and antibacterial activity. Chem. Eng. J. 2020, 384, 123379.

[80]

Yang, J.; Chen, Y.; Jia, X. H.; Li, Y.; Wang, S. Z.; Song, H. J. Wood-based solar interface evaporation device with self-desalting and high antibacterial activity for efficient solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 47029–47037.

[81]

Li, H. R.; He, Y. R.; Liu, Z. Y.; Jiang, B. C.; Huang, Y. M. A flexible thin-film membrane with broadband Ag@TiO2 nanoparticle for high-efficiency solar evaporation enhancement. Energy 2017, 139, 210–219.

[82]

Ma, T. Y.; Yang, C. Y.; Guo, W.; Lin, H. M.; Zhang, F.; Liu, H. X.; Zhao, L.; Zhang, Y.; Wang, Y. Z.; Cui, Y. T. et al. Flexible Pt3Ni-S-deposited teflon membrane with high surface mechanical properties for efficient solar-driven strong acidic/alkaline water evaporation. ACS Appl. Mater. Interfaces 2020, 12, 27140–27149.

[83]

Kim, J. U.; Kang, S. J.; Lee, S.; Ok, J.; Kim, Y.; Roh, S. H.; Hong, H.; Kim, J. K.; Chae, H.; Kwon, S. J. et al. Omnidirectional, broadband light absorption in a hierarchical nanoturf membrane for an advanced solar-vapor generator. Adv. Funct. Mater. 2020, 30, 2003862.

[84]

Kiriarachchi, H. D.; Awad, F. S.; Hassan, A. A.; Bobb, J. A.; Lin, A.; El-Shall, M. S. Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment. Nanoscale 2018, 10, 18531–18539.

[85]

Bae, K.; Kang, G. M.; Cho, S. K.; Park, W.; Kim, K.; Padilla, W. J. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 2015, 6, 10103.

Nano Research
Pages 10358-10368
Cite this article:
Yue D, Li B, Sun D, et al. Electrochemically prepared coniferous leaf-like nickel black membrane for desalination by solar-thermal energy conversion. Nano Research, 2023, 16(7): 10358-10368. https://doi.org/10.1007/s12274-023-5506-4
Topics:

804

Views

9

Crossref

9

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 26 November 2022
Revised: 11 January 2023
Accepted: 13 January 2023
Published: 20 March 2023
© Tsinghua University Press 2023
Return