AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hydrogen-assisted activation of N2 molecules on atomic steps of ZnSe nanorods

Kun Du1,§Xiuyao Lang2,§Yuanyuan Yang1Chuanqi Cheng1Ning Lan1Kangwen Qiu3( )Jing Mao1Weichao Wang2Tao Ling1( )
Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
College of Energy Engineering, Huanghuai University, Zhumadian 463000, China

§ Kun Du and Xiuyao Lang contributed equally to this work.

Show Author Information

Graphical Abstract

In this work, highly twinned ZnSe nanorods with abundant atomic steps were synthesized by ion exchange method. It is revealed that the hydrogenation behavior of ZnSe nanorods can efficiently activate N2 adsorbed on the surface.

Abstract

Electrochemical reduction reaction of nitrogen (NRR) offers a promising pathway to produce ammonia (NH3) from renewable energy. However, the development of such process has been hindered by the chemical inertness of N2. It is recently proposed that hydrogen species formed on the surface of electrocatalysts can greatly enhance NRR. However, there is still a lack of atomic-level connection between the hydrogenation behavior of electrocatalysts and their NRR performance. Here, we report an atomistic understanding of the hydrogenation behavior of a highly twinned ZnSe (T-ZnSe) nanorod with a large density of surface atomic steps and the activation of N2 molecules adsorbed on its surface. Our theoretical calculations and in situ infrared spectroscopic characterizations suggest that the atomic steps are essential for the hydrogenation of T-ZnSe, which greatly reduces its work function and efficiently activates adsorbed N2 molecules. Moreover, the liquid-like and free water over T-ZnSe promotes its hydrogenation. As a result, T-ZnSe nanorods exhibit significantly enhanced Faradaic efficiency and NH3 production rate compared with the pristine ZnSe nanorod. This work paves a promising way for engineering electrocatalysts for green and sustainable NH3 production.

Electronic Supplementary Material

Download File(s)
12274_2022_5508_MOESM1_ESM.pdf (2.5 MB)

References

[1]

Galloway, J. N.; Townsend, A. R.; Erisman, J. W.; Bekunda, M.; Cai, Z. C.; Freney, J. R.; Martinelli, L. A.; Seitzinger, S. P.; Sutton M. A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892.

[2]

Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, eaar6611.

[3]

Wang, L.; Xia, M. K.; Wang, H.; Huang, K. F.; Qian, C. X.; Maravelias, C. T.; Ozin, G. A. Greening ammonia toward the solar ammonia refinery. Joule 2018, 2, 1055–1074.

[4]

Forrest, S. J. K.; Schluschaß, B.; Yuzik-Klimova, E. Y.; Schneider, S. Nitrogen fixation via splitting into nitrido complexes. Chem. Rev. 2021, 121, 6522–6587.

[5]

Service, R. F. Liquid sunshine. Science 2018, 361, 120–123.

[6]

Wan, Y. C.; Xu, J. C.; Lv, R. T. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater. Today 2019, 27, 69–90.

[7]

Lv, C. D.; Yan, C. S.; Chen, G.; Ding, Y.; Sun, J. X.; Zhou, Y. S.; Yu, G. H. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 6073–6076.

[8]

Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 μg NH3·mgcat−1·h−1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, 1803498.

[9]

Tang, C.; Qiao, S. Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 2019, 48, 3166–3180.

[10]

Zhang, L. L.; Ding, L. X.; Chen, G. F.; Yang, X. F.; Wang, H. H. Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem., Int. Ed. 2019, 58, 2612–2616.

[11]

Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

[12]

Qing, G. L. T.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith III, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.

[13]

Chen, G. F.; Cao, X. R.; Wu, S. Q.; Zeng, X. Y.; Ding, L. X.; Zhu, M.; Wang, H. H. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 2017, 139, 9771–9774.

[14]

Ye, L.; Nayak-Luke, R.; Bañares-Alcántara, R.; Tsang, E. Reaction: “Green” ammonia production. Chem 2017, 3, 712–714.

[15]

Jewess, M.; Crabtree, R. H. Electrocatalytic nitrogen fixation for distributed fertilizer production? ACS Sustainable Chem. Eng. 2016, 4, 5855–5858.

[16]

Shipman, M. A.; Symes, M. D. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal. Today 2017, 286, 57–68.

[17]

Zhang, L.; Ji, X. Q.; Ren, X.; Ma, Y. J.; Shi, X. F.; Tian, Z. Q.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 2018, 30, 1800191.

[18]

Wang, H.; Si, J. C.; Zhang, T. Y.; Li, Y.; Yang, B.; Li, Z.; Chen, J.; Wen, Z. H.; Yuan, C.; Lei, L. C. et al. Exfoliated metallic niobium disulfate nanosheets for enhanced electrochemical ammonia synthesis and Zn-N2 battery. Appl. Catal. B Environ. 2020, 270, 118892.

[19]

Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.

[20]

Zhao, X.; Hu, G. Z.; Chen, G. F.; Zhang, H. B.; Zhang, S. S.; Wang, H. H. Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction. Adv. Mater. 2021, 33, 2007650.

[21]

Lin, S. S.; Zhang, X. H.; Chen, L. G.; Zhang, Q.; Ma, L. L.; Liu, J. G. A review on catalysts for electrocatalytic and photocatalytic reduction of N2 to ammonia. Green Chem. 2022, 24, 9003–9026.

[22]

Jia, H. P.; Quadrelli, E. A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 2014, 43, 547–564.

[23]

Zhan, C. G.; Nichols, J. A.; Dixon, D. A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies. J. Phys. Chem. A 2003, 107, 4184–4195.

[24]

Islam, J.; Shareef, M.; Zabed, H. M.; Qi, X. H.; Chowdhury, F. I.; Das, J.; Uddin, J.; Kaneti, Y. V.; Khandaker, M. U.; Ullah, H. et al. Electrochemical nitrogen fixation in metal-N2 batteries: A paradigm for simultaneous NH3 synthesis and energy generation. Energy Storage Mater. 2023, 54, 98–119.

[25]

Ren, Y. W.; Yu, C.; Tan, X. Y.; Huang, H. L.; Wei, Q. B.; Qiu, J. S. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: Challenges and perspectives. Energy Environ. Sci. 2021, 14, 1176–1193.

[26]

Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H. L.; Feng, X. F. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795.

[27]

Singh, A. R.; Rohr, B. A.; Schwalbe, J. A.; Cargnello, M.; Chan, K.; Jaramillo, T. F.; Chorkendorff, I.; Nørskov, J. K. Electrochemical ammonia synthesis—The selectivity challenge. ACS Catal. 2017, 7, 706–709.

[28]

Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836–841.

[29]

Liu, Y.; Wang, L. L.; Chen, L.; Wang, H. D.; Jadhav, A. R.; Yang, T.; Wang, Y. X.; Zhang, J. Q.; Kumar, A.; Lee, J. et al. Unveiling the protonation kinetics-dependent selectivity in nitrogen electroreduction: Achieving 75.05% selectivity. Angew. Chem., Int. Ed. 2022, 61, e202209555.

[30]

Cheng, H.; Ding, L. X.; Chen, G. F.; Zhang, L. L.; Xue, J.; Wang, H. H. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 2018, 30, 1803694.

[31]

Ling, T.; Jaroniec, M.; Qiao, S. Z. Recent progress in engineering the atomic and electronic structure of electrocatalysts via cation exchange reactions. Adv. Mater. 2020, 32, 2001866.

[32]

Sun, K. A.; Wu, X. Y.; Zhuang, Z. W.; Liu, L. Y.; Fang, J. J.; Zeng, L. Y.; Ma, J. G.; Liu, S. J.; Li, J. Z.; Dai, R. Y. et al. Interfacial water engineering boosts neutral water reduction. Nat. Commun. 2022, 13, 6260.

[33]

Wang, M. M.; Sun, K. A.; Mi, W. L.; Feng, C.; Guan, Z. K.; Liu, Y. Q.; Pan, Y. Interfacial water activation by single-atom Co–N3 sites coupled with encapsulated Co nanocrystals for accelerating electrocatalytic hydrogen evolution. ACS Catal. 2022, 12, 10771–10780.

[34]

Wang, Y. H.; Zheng, S. S.; Yang, W. M.; Zhou, R. Y.; He, Q. F.; Radjenovic, P.; Dong, J. C.; Li, S. N.; Zheng, J. X.; Yang, Z. L. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 2021, 600, 81–85.

[35]

Gao, Y.; Yang, R.; Wang, C. H.; Liu, C. B.; Wu, Y. M.; Li, H. Z.; Zhang, B. Field-induced reagent concentration and sulfur adsorption enable efficient electrocatalytic semihydrogenation of alkynes. Sci. Adv. 2022, 8, eabm9477.

[36]

Liu, H. L.; Han, J. L.; Yuan, J. L.; Liu, C. B.; Wang, D.; Liu, T.; Liu, M. J.; Luo, J. M.; Wang, A. J.; Crittenden, J. C. Deep dehalogenation of florfenicol using crystalline CoP nanosheet arrays on a Ti plate via direct cathodic reduction and atomic H. Environ. Sci. Technol. 2019, 53, 11932–11940.

[37]

Iriawan, H.; Andersen, S. Z.; Zhang, X. L.; Comer, B. M.; Barrio, J.; Chen, P.; Medford, A. J.; Stephens, I. E. L.; Chorkendorff, I.; Shao-Horn, Y. Methods for nitrogen activation by reduction and oxidation. Nat. Rev. Methods Primers 2021, 1, 56.

Nano Research
Pages 6721-6727
Cite this article:
Du K, Lang X, Yang Y, et al. Hydrogen-assisted activation of N2 molecules on atomic steps of ZnSe nanorods. Nano Research, 2023, 16(5): 6721-6727. https://doi.org/10.1007/s12274-023-5508-2
Topics:

949

Views

5

Crossref

8

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 25 November 2022
Revised: 03 January 2023
Accepted: 15 January 2023
Published: 27 February 2023
© Tsinghua University Press 2023
Return