AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

State of the art recent advances and perspectives in 2D MXene-based microwave absorbing materials: A review

Hongtao Guo1Xiao Wang1Fei Pan1Yuyang Shi1Haojie Jiang1Lei Cai1Jie Cheng1Xiang Zhang1Yang Yang1Lixin Li1Zheng Xiu1Dan Batalu2Wei Lu1( )
Shanghai Key Laboratory of D&A for Metallic Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
Materials Science and Engineering Faculty, University Politehnica of Bucharest, Bucharest 060042, Romania
Show Author Information

Graphical Abstract

MXenes, as an emerging family of two-dimensional (2D) nanomaterials, demonstrate superiority to conventional nanomaterials, such as tunable electrical conductivity, unique layer structure, abundant terminal groups, and great physico-chemical properties, becoming potential candidate materials for high-efficiency microwave absorption (MA). Recently, many efforts have been carried out to further develop high-performance and smart MXene-based MA materials to meet the coming “intelligent era”.

Abstract

Recently, great efforts have been made to explore high-performance microwave absorbing (MA) materials, which aim to reduce the booming electromagnetic wave (EMW) pollution caused by electronic devices. MXenes (i.e., two-dimensional (2D) transition metal carbide/nitride), an emerging family of 2D nanomaterials, demonstrate superiority to conventional nanomaterials, such as tunable electrical conductivity, unique layer structure, abundant terminal groups, and great physico-chemical properties, becoming potential candidate materials for high-efficiency MA. By hybridizing MXenes with other lossy mediums and designing novel microstructures, MA properties can be further optimized and enhanced for practical applications. Furthermore, MXene-based materials, with smartly designed multi-functionality, become a research priority to develop new or advanced applications for the coming “intelligent era”. This review focuses on using MXenes to effectively absorb EMW energy. In the first part, the fabricating methods of MXenes are systematically introduced followed by a second part on the progress of MXene-based materials regarding the MA performances, as well as a summarization on their next-generation smart multifunctional materials. In the final part, opinions on the future perspectives and opportunities of MXene-based MA materials are presented. It is believed that this review will pave the way for further flourishing the development of MXene-based materials in MA field.

References

[1]

Xia, Y. X.; Gao, W. W.; Gao, C. A review on graphene-based electromagnetic functional materials: Electromagnetic wave shielding and absorption. Adv. Funct. Mater. 2022, 32, 2204591.

[2]

Lv, H. L.; Yang, Z. H.; Pan, H. G.; Wu, R. B. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 2022, 127, 100946.

[3]

Shi, Y. Y.; Xiang, Z.; Cai, L.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Cheng, J.; Jiang, H. J.; Lu, W. Multi-interface assembled N-doped MXene/HCFG/AgNW films for wearable electromagnetic shielding devices with multimodal energy conversion and healthcare monitoring performances. ACS Nano 2022, 16, 7816–7833.

[4]

Xiang, Z.; Zhu, X. J.; Dong, Y. Y.; Zhang, X.; Shi, Y. Y.; Lu, W. Enhanced electromagnetic wave absorption of magnetic Co nanoparticles/CNTs/EG porous composites with waterproof, flame-retardant and thermal management functions. J. Mater. Chem. A 2021, 9, 17538–17552.

[5]

Gai, L. X.; Zhao, H. H.; Wang, F. Y.; Wang, P.; Liu, Y. L.; Han, X. J.; Du, Y. C. Advances in core–shell engineering of carbon-based composites for electromagnetic wave absorption. Nano Res. 2022, 15, 9410–9439.

[6]

Guan, X. M.; Yang, Z. H.; Zhou, M.; Yang, L.; Peymanfar, R.; Aslibeiki, B.; Ji, G. B. 2D MXene nanomaterials: Synthesis, mechanism, and multifunctional applications in microwave absorption. Small Struct. 2022, 3, 2200102.

[7]

Cao, F. C.; Zhang, Y.; Wang, H. Q.; Khan, K.; Tareen, A. K.; Qian, W. J.; Zhang, H.; Ågren, H. Recent advances in oxidation stable chemistry of 2D MXenes. Adv. Mater. 2022, 34, 2107554.

[8]

VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.

[9]

Han, M. K.; Shuck, C. E.; Rakhmanov, R.; Parchment, D.; Anasori, B.; Koo, C. M.; Friedman, G.; Gogotsi, Y. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 2020, 14, 5008–5016.

[10]

Zhao, X.; Zha, X. J.; Tang, L. S.; Pu, J. H.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Self-assembled core–shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 2020, 13, 255–264.

[11]

Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

[12]

Liu, J. L.; Zhang, L. M.; Wu, H. J. Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F- regulation engineering. Adv. Funct. Mater. 2022, 32, 2110496.

[13]

Pan, F.; Cai, L.; Shi, Y. Y.; Dong, Y. Y.; Zhu, X. J.; Cheng, J.; Jiang, H. J.; Wang, X.; Jiang, Y. F.; Lu, W. Heterointerface engineering of β-chitin/carbon nano-onions/Ni-P composites with boosted maxwell-wagner-sillars effect for highly efficient electromagnetic wave response and thermal management. Nano-Micro Lett. 2022, 14, 85.

[14]

Ning, M. Q.; Lu, M. M.; Li, J. B.; Chen, Z.; Dou, Y. K.; Wang, C. Z.; Rehman, F.; Cao, M. S.; Jin, H. B. Two-dimensional nanosheets of MoS2: A promising material with high dielectric properties and microwave absorption performance. Nanoscale 2015, 7, 15734–15740.

[15]

Li, R. S.; Gao, Q.; Xing, H. N.; Su, Y. Z.; Zhang, H. M.; Zeng, D.; Fan, B. B.; Zhao, B. Lightweight, multifunctional MXene/polymer composites with enhanced electromagnetic wave absorption and high-performance thermal conductivity. Carbon 2021, 183, 301–312.

[16]

Kumar, H.; Frey, N. C.; Dong, L.; Anasori, B.; Gogotsi, Y.; Shenoy, V. B. Tunable magnetism and transport properties in nitride MXenes. ACS Nano 2017, 11, 7648–7655.

[17]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

[18]

Nasrin, K.; Sudharshan, V.; Subramani, K.; Sathish, M. Insights into 2D/2D MXene heterostructures for improved synergy in structure toward next-generation supercapacitors: A review. Adv. Funct. Mater. 2022, 32, 2110267.

[19]

Wei, Y.; Zhang, P.; Soomro, R. A.; Zhu, Q. Z.; Xu, B. Advances in the synthesis of 2D MXenes. Adv. Mater. 2021, 33, 2103148.

[20]

Huang, W. X.; Li, Z. P.; Li, D. D.; Hu, Z. H.; Wu, C.; Lv, K. L.; Li, Q. Ti3C2 MXene: Recent progress in its fundamentals, synthesis, and applications. Rare Met. 2022, 41, 3268–3300.

[21]

Zhang, H. F.; Xuan, J. Y.; Zhang, Q.; Sun, M. L.; Jia, F. C.; Wang, X. M.; Yin, G. C.; Lu, S. Y. Strategies and challenges for enhancing performance of MXene-based gas sensors: A review. Rare Met. 2022, 41, 3976–3999.

[22]

Natu, V.; Pai, R.; Sokol, M.; Carey, M.; Kalra, V.; Barsoum, M. W. 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 2020, 6, 616–630.

[23]

Lipatov, A.; Alhabeb, M.; Lukatskaya, M. R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2016, 2, 1600255.

[24]

Alhabeb, M.; Maleski, K.; Mathis, T. S.; Sarycheva, A.; Hatter, C. B.; Uzun, S.; Levitt, A.; Gogotsi, Y. Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew. Chem., Int. Ed. 2018, 57, 5444–5448.

[25]

Zhang, S. L.; Li, X. Y.; Yang, W. T.; Tian, H. J.; Han, Z. K.; Ying, H. J.; Wang, G. X.; Han, W. Q. Novel synthesis of red phosphorus nanodot/Ti3C2Tx MXenes from low-cost Ti3SiC2 MAX phases for superior lithium- and sodium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 42086–42093.

[26]

Sun, W.; Shah, S. A.; Chen, Y.; Tan, Z.; Gao, H.; Habib, T.; Radovic, M.; Green, M. J. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 2017, 5, 21663–21668.

[27]

Yang, S.; Zhang, P. P.; Wang, F. X.; Ricciardulli, A. G.; Lohe, M. R.; Blom, P. W. M.; Feng, X. L. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem., Int. Ed. 2018, 57, 15491–15495.

[28]

Zhao, M. Q.; Sedran, M.; Ling, Z.; Lukatskaya, M. R.; Mashtalir, O.; Ghidiu, M.; Dyatkin, B.; Tallman, D. J.; Djenizian, T.; Barsoum, M. W. et al. Synthesis of carbon/sulfur nanolaminates by electrochemical extraction of titanium from Ti2SC. Angew. Chem., Int. Ed. 2015, 54, 4810–4814.

[29]

Chen, J. Z.; Chen, M. F.; Zhou, W. J.; Xu, X. W.; Liu, B.; Zhang, W. Q.; Wong, C. Simplified synthesis of fluoride-free Ti3C2Tx via electrochemical etching toward high-performance electrochemical capacitors. ACS Nano 2022, 16, 2461–2470.

[30]

Li, M.; Lu, J.; Luo, K.; Li, Y. B.; Chang, K. K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P. et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 2019, 141, 4730–4737.

[31]

Li, Y. B.; Shao, H.; Lin, Z. F.; Lu, J.; Liu, L. Y.; Duployer, B.; Persson, P. O. Å.; Eklund, P.; Hultman, L.; Li, M. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899.

[32]

Li, T. F.; Yao, L. L.; Liu, Q. L.; Gu, J. J.; Luo, R. C.; Li, J. H.; Yan, X. D.; Wang, W. Q.; Liu, P.; Chen, B. et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew. Chem., Int. Ed. 2018, 57, 6115–6119.

[33]

Gogotsi, Y. Transition metal carbides go 2D. Nat. Mater. 2015, 14, 1079–1080.

[34]

Xu, C.; Wang, L. B.; Liu, Z. B.; Chen, L.; Guo, J. K.; Kang, N.; Ma, X. L.; Cheng, H. M.; Ren, W. C. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015, 14, 1135–1141.

[35]

Qing, Y.; Zhou, W. C.; Luo, F.; Zhu, D. M. Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram. Int. 2016, 42, 16412–16416.

[36]

Feng, W. L.; Luo, H.; Wang, Y.; Zeng, S. F.; Deng, L. W.; Zhou, X. S.; Zhang, H. B.; Peng, S. M. Ti3C2 MXene: A promising microwave absorbing material. RSC Adv. 2018, 8, 2398–2403.

[37]

He, P.; Cao, M. S.; Shu, J. C.; Cai, Y. Z.; Wang, X. X.; Zhao, Q. L.; Yuan, J. Atomic layer tailoring titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy. ACS Appl. Mater. Interfaces 2019, 11, 12535–12543.

[38]

Sang, X. H.; Xie, Y.; Lin, M. W.; Alhabeb, M.; Van Aken, K. L.; Gogotsi, Y.; Kent, P. R. C.; Xiao, K.; Unocic, R. R. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 2016, 10, 9193–9200.

[39]

Hu, F. Y.; Wang, X. H.; Niu, H. H.; Zhang, S.; Fan, B. B.; Zhang, R. Synthesis and electromagnetic wave absorption of novel Mo2TiC2Tx MXene with diverse etching methods. J. Mater. Sci. 2022, 57, 7849–7862.

[40]

Tong, Y.; He, M.; Zhou, Y. M.; Zhong, X.; Fan, L. D.; Huang, T. Y.; Liao, Q.; Wang, Y. J. Electromagnetic wave absorption properties in the centimetre-band of Ti3C2Tx MXenes with diverse etching time. J. Mater. Sci. :Mater. Electron. 2018, 29, 8078–8088.

[41]

Cui, G. Z.; Zheng, X.; Lv, X. L.; Jia, Q.; Xie, W.; Gu, G. X. Synthesis and microwave absorption of Ti3C2Tx MXene with diverse reactant concentration, reaction time, and reaction temperature. Ceram. Int. 2019, 45, 23600–23610.

[42]

Xu, G. F.; Wang, X. X.; Gong, S. D.; Wei, S.; Liu, J. Q.; Xu, Y. H. Solvent-regulated preparation of well-intercalated Ti3C2Tx MXene nanosheets and application for highly effective electromagnetic wave absorption. Nanotechnology 2018, 29, 355201.

[43]

Wang, X. X.; You, F. F.; Wu, L. S.; Ji, R.; Wen, X. Y.; Fan, B. X.; Tong, G. X.; Chen, D. B.; Wu, W. H. Enhanced heat conductance and microwave absorption of 2D laminated Ti3C2Tx MXene microflakes via steering surface, defects, and interlayer spacing. J. Alloys Compd. 2022, 918, 165740.

[44]

Wang, X. L.; Fan, X. M.; Li, M. H.; Zhu, W. J.; Xue, J. M.; Ye, F.; Cheng, L. F. Structure and electromagnetic properties of Ti3C2Tx MXene derived from Ti3AlC2 with different microstructures. Ceram. Int. 2021, 47, 13628–13634.

[45]

Zhou, X. J.; Wen, J. W.; Wang, Z. N.; Ma, X. H.; Wu, H. J. Broadband high-performance microwave absorption of the single-layer Ti3C2Tx MXene. J. Mater. Sci. Technol. 2022, 115, 148–155.

[46]

Song, S. W.; Liu, J. Q.; Zhou, C. L.; Jia, Q.; Luo, H.; Deng, L. W.; Wang, X. X. Nb2O5/Nb2CTx composites with different morphologies through oxidation of Nb2CTx MXene for high-performance microwave absorption. J. Alloys Compd. 2020, 843, 155713.

[47]

Xu, W. M.; Li, S. B.; Hu, S. J.; Yu, W. B.; Zhou, Y. Effect of heat treatment on microwave absorption properties of Ti3C2Tx. J. Mater. Sci. :Mater. Electron. 2021, 32, 17953–17965.

[48]

Han, M. K.; Yin, X. W.; Wu, H.; Hou, Z. X.; Song, C. Q.; Li, X. L.; Zhang, L. T.; Cheng, L. F. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Appl. Mater. Interfaces 2016, 8, 21011–21019.

[49]

Han, M. K.; Yin, X. W.; Li, X. L.; Anasori, B.; Zhang, L. T.; Cheng, L. F.; Gogotsi, Y. Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl. Mater. Interfaces 2017, 9, 20038–20045.

[50]

Li, X. L.; Yin, X. W.; Han, M. K.; Song, C. Q.; Sun, X. N.; Xu, H. L.; Cheng, L. F.; Zhang, L. T. A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene. J. Mater. Chem. C 2017, 5, 7621–7628.

[51]

Xia, T.; Cao, Y. H.; Oyler, N. A.; Murowchick, J.; Liu, L.; Chen, X. B. Strong microwave absorption of hydrogenated wide bandgap semiconductor nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 10407–10413.

[52]

Wu, J. D.; Feng, Y.; Xia, Y.; Zhu, Q.; Luo, L. P.; Ma, L.; Li, H. M.; Yan, H. X.; Qi, S. H. Fabrication of S-doped Ti3C2Tx materials with enhanced electromagnetic wave absorbing properties. J. Alloys Compd. 2022, 891, 161942.

[53]

Hu, K. X.; Wang, H. H.; Zhang, X.; Huang, H.; Qiu, T.; Wang, Y.; Zhang, C. F.; Pan, L. M.; Yang, J. Ultralight Ti3C2Tx MXene foam with superior microwave absorption performance. Chem. Eng. J. 2021, 408, 127283.

[54]

Zhou, X. J.; Wen, J. W.; Ma, X. H.; Wu, H. J. Manipulation of microstructure of MXene aerogel via metal ions-initiated gelation for electromagnetic wave absorption. J. Colloid Interface Sci. 2022, 624, 505–514.

[55]

Zhang, Z. W.; Cai, Z. H.; Zhang, Y.; Peng, Y. L.; Wang, Z. Y.; Xia, L.; Ma, S. P.; Yin, Z. Z.; Wang, R. F.; Cao, Y. S. et al. The recent progress of MXene-Based microwave absorption materials. Carbon 2021, 174, 484–499.

[56]

Chen, X. T.; Wu, Y.; Gu, W. H.; Zhou, M.; Tang, S. L.; Cao, J. M.; Zou, Z. Q.; Ji, G. B. Research progress on nanostructure design and composition regulation of carbon spheres for the microwave absorption. Carbon 2022, 189, 617–633.

[57]

Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

[58]

Li, X. L.; Yin, X. W.; Song, C. Q.; Han, M. K.; Xu, H. L.; Duan, W. Y.; Cheng, L. F.; Zhang, L. T. Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 2018, 28, 1803938.

[59]

Wang, Y. C.; Yao, L. H.; Zheng, Q.; Cao, M. S. Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res. 2022, 15, 6751–6760.

[60]

Zhang, Y.; Xu, M. K.; Wang, Z. G.; Zhao, T. Y.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 2022, 15, 4916–4924.

[61]

Zhang, Y.; Huang, Y.; Chen, H. H.; Huang, Z. Y.; Yang, Y.; Xiao, P. S.; Zhou, Y.; Chen, Y. S. Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 2016, 105, 438–447.

[62]

Permatasari, F. A.; Irham, M. A.; Bisri, S. Z.; Iskandar, F. Carbon-based quantum dots for supercapacitors: Recent advances and future challenges. Nanomaterials 2021, 11, 91.

[63]

Li, D. P.; Sun, Y. C.; Wang, X.; Wu, S.; Han, S. C.; Yang, Y. Development of a hollow carbon sphere absorber displaying the multiple-reflection effect to attenuate electromagnetic waves. RSC Adv. 2017, 7, 37983–37989.

[64]

Dai, B. Z.; Zhao, B.; Xie, X.; Su, T. T.; Fan, B. B.; Zhang, R.; Yang, R. Novel two-dimensional Ti3C2Tx MXenes/nano-carbon sphere hybrids for high-performance microwave absorption. J. Mater. Chem. C 2018, 6, 5690–5697.

[65]

Zhu, W. J.; Ye, F.; Li, M. H.; Wang, X. L.; Zhou, Q.; Fan, X. M.; Xue, J. M.; Li, X. Q. In-situ growth of wafer-like Ti3C2/Carbon nanoparticle hybrids with excellent tunable electromagnetic absorption performance. Compos. Part B: Eng. 2020, 202, 108408.

[66]

Huyan, W. J.; Yao, J. R.; Tao, J. Q.; Yang, F.; Tao, X. W.; Yao, Z. J.; Zhou, J. T.; Jiao, Z. B. MXene@C heterogeneous nanocomposites with the 2D-0D structure for ultra-light and broadband electromagnetic wave absorption. Carbon 2022, 197, 444–454.

[67]

Tan, D. C.; Jiang, C. M.; Li, Q. K.; Bi, S.; Song, J. H. Silver nanowire networks with preparations and applications: A review. J. Mater. Sci. :Mater. Electron. 2020, 31, 15669–15696.

[68]

Guo, H. T.; Chen, Y. M.; Li, Y.; Zhou, W.; Xu, W. H.; Pang, L.; Fan, X. M.; Jiang, S. H. Electrospun fibrous materials and their applications for electromagnetic interference shielding: A review. Compos. Part A: Appl. Sci. Manuf. 2021, 143, 106309.

[69]

Guo, H. T.; Wang, F.; Luo, H.; Li, Y.; Lou, Z. C.; Ji, Y.; Liu, X. Y.; Shen, B.; Peng, Y. H.; Liu, K. M. et al. Flexible TaC/C electrospun non-woven fabrics with multiple spatial-scale conductive frameworks for efficient electromagnetic interference shielding. Compos. Part A: Appl. Sci. Manuf. 2021, 151, 106662.

[70]

Kholghi Eshkalak, S.; Chinnappan, A.; Jayathilaka, W. A. D. M.; Khatibzadeh, M.; Kowsari, E.; Ramakrishna, S. A review on inkjet printing of CNT composites for smart applications. Appl. Mater. Today 2017, 9, 372–386.

[71]

Cui, Y. H.; Wu, F.; Wang, J. Q.; Wang, Y. B.; Shah, T.; Liu, P.; Zhang, Q. Y.; Zhang, B. L. Three dimensional porous MXene/CNTs microspheres: Preparation, characterization and microwave absorbing properties. Compos. Part A: Appl. Sci. Manuf. 2021, 145, 106378.

[72]

Li, X. L.; Yin, X. W.; Han, M. K.; Song, C. Q.; Xu, H. L.; Hou, Z. X.; Zhang, L. T.; Cheng, L. F. Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 2017, 5, 4068–4074.

[73]

Yue, Y.; Wang, Y. X.; Xu, X. D.; Wang, C. J.; Yao, Z. Q.; Liu, D. M. In-situ growth of bamboo-shaped carbon nanotubes and helical carbon nanofibers on Ti3C2Tx MXene at ultra-low temperature for enhanced electromagnetic wave absorption properties. Ceram. Int. 2022, 48, 6338–6346.

[74]

Reddy, Y. V. M.; Shin, J. H.; Palakollu, V. N.; Sravani, B.; Choi, C. H.; Park, K.; Kim, S. K.; Madhavi, G.; Park, J. P.; Shetti, N. P. Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors. Adv. Colloid Interface Sci. 2022, 304, 102664.

[75]

Yu, W. Z.; Gong, K. W.; Li, Y. Y.; Ding, B. B.; Li, L.; Xu, Y. K.; Wang, R.; Li, L. B.; Zhang, G. Y.; Lin, S. H. Flexible 2D materials beyond graphene: Synthesis, properties, and applications. Small 2022, 18, 2105383.

[76]

Yang, L. S.; Chen, W. J.; Yu, Q. M.; Liu, B. L. Mass production of two-dimensional materials beyond graphene and their applications. Nano Res. 2021, 14, 1583–1597.

[77]

Cao, M. S.; Wang, X. X.; Zhang, M.; Cao, W. Q.; Fang, X. Y.; Yuan, J. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 2020, 32, 1907156.

[78]

Wang, L. B.; Liu, H.; Lv, X. L.; Cui, G. Z.; Gu, G. X. Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption. J. Alloys Compd. 2020, 828, 154251.

[79]

Ning, Y. H.; Yang, M. L.; Zhao, Z. B.; Sun, X. X.; Yang, S.; Wang, S. S.; Liang, L.; Cheng, Y. J.; Yin, W. L.; Yuan, Y. et al. Anisotropic electromagnetic absorption of the aligned Ti3C2Tx MXene/RGO nanocomposite foam. Compos. Sci. Technol. 2022, 227, 109609.

[80]

Li, Y.; Meng, F. B.; Mei, Y.; Wang, H. G.; Guo, Y. F.; Wang, Y.; Peng, F. X.; Huang, F.; Zhou, Z. W. Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 2020, 391, 123512.

[81]

Lyu, L.; Wang, F. L.; Zhang, X.; Qiao, J.; Liu, C.; Liu, J. R. CuNi alloy/ carbon foam nanohybrids as high-performance electromagnetic wave absorbers. Carbon 2021, 172, 488–496.

[82]

Wang, Y.; Yang, J.; Chen, Z. F.; Hu, Y. L. A new flexible and ultralight carbon foam/Ti3C2TX MXene hybrid for high-performance electromagnetic wave absorption. RSC Adv. 2019, 9, 41038–41049.

[83]

Sun, T. P.; Liu, Z. W.; Li, S.; Liu, H. S.; Chen, F.; Wang, K.; Zhao, Y. Effective improvement on microwave absorbing performance of epoxy resin-based composites with 3D MXene foam prepared by one-step impregnation method. Compos. Part A: Appl. Sci. Manuf. 2021, 150, 106594.

[84]

Lan, D.; Gao, Z. G.; Zhao, Z. H.; Kou, K. C.; Wu, H. J. Application progress of conductive conjugated polymers in electromagnetic wave absorbing composites. Compos. Commun. 2021, 26, 100767.

[85]

Zhao, L. B.; Guo, Y. Y.; Xie, Y. X.; Cheng, T. T.; Meng, A. L.; Yuan, L. Y.; Zhao, W. X.; Sun, C. L.; Li, Z. J.; Zhang, M. Construction of SiCNWS@NiCo2O4@PANI 1D hierarchical nanocomposites toward high-efficiency microwave absorption. Appl. Surf. Sci. 2022, 592, 153324.

[86]

Bora, P. J.; Mahanta, B.; Anil, A. G.; Tan, D. Q.; Ramamurthy, P. C. Electromagnetic data-driven approach to realize the best microwave absorption characteristics of MXene-based nanocomposites. ACS Appl. Electron. Mater. 2021, 3, 4558–4567.

[87]

Shi, Y. Y.; Li, S. S.; Tian, Z. M.; Yang, X. S.; Dong, Y. B.; Zhu, Y. F.; Fu, Y. Q. Self-assembled lightweight three-dimensional hierarchically porous Ti3C2Tx MXene@polyaniline hybrids for superior microwave absorption. J. Alloys Compd. 2022, 892, 162194.

[88]

Khani, O.; Nemati, F.; Farrokhi, H.; Jazirehpour, M. Synthesis and characterization of electromagnetic properties of polypyrrole nanorods prepared via self-reactive MnO2 template. Synth. Met. 2016, 220, 567–572.

[89]

Jiao, Y. Z.; Wu, F.; Xie, A. M.; Wu, L. P.; Zhao, W.; Zhu, X. F.; Qi, X. L. Electrically conductive conjugate microporous polymers (CMPs) via confined polymerization of pyrrole for electromagnetic wave absorption. Chem. Eng. J. 2020, 398, 125591.

[90]

Tong, Y.; He, M.; Zhou, Y. M.; Zhong, X.; Fan, L. D.; Huang, T. Y.; Liao, Q.; Wang, Y. J. Hybridizing polypyrrole chains with laminated and two-dimensional Ti3C2Tx toward high-performance electromagnetic wave absorption. Appl. Surf. Sci. 2018, 434, 283–293.

[91]

Liu, T. S.; Liu, N.; An, Q. D.; Xiao, Z. Y.; Zhai, S. R.; Li, Z. C. Designed construction of Ti3C2Tx@PPY composites with enhanced microwave absorption performance. J. Alloys Compd. 2019, 802, 445–457.

[92]

Liu, Y.; Qin, J. N.; Shi, H. H.; Xu, J.; Lu, L. L.; Su, X. L. Electromagnetic and microwave absorption properties of Ag wrapped MXene composite with frequency selective surface incorporation. Diam. Relat. Mater. 2022, 126, 108996.

[93]

Li, M.; Han, M. K.; Zhou, J.; Deng, Q. H.; Zhou, X. B.; Xue, J. M.; Du, S. Y.; Yin, X. W.; Huang, Q. Novel scale-like structures of graphite/TiC/Ti3C2 hybrids for electromagnetic absorption. Adv. Electron. Mater. 2018, 4, 1700617.

[94]

Xu, X. D.; Wang, Y. X.; Yue, Y.; Wang, C. J.; Xu, Z. H.; Liu, D. M. Core-shell MXene/nitrogen-doped C heterostructure for wide-band electromagnetic wave absorption at thin thickness. Ceram. Int. 2022, 48, 30317–30324.

[95]

Lv, H. L.; Guo, Y. H.; Yang, Z. H.; Cheng, Y.; Wang, L. P.; Zhang, B. S.; Zhao, Y.; Xu, Z. J.; Ji, G. B. A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials. J. Mater. Chem. C 2017, 5, 491–512.

[96]

Wu, R. B.; Zhou, K.; Yue, C. Y.; Wei, J.; Pan, Y. Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater. Sci. 2015, 72, 1–60.

[97]

Tuci, G.; Liu, Y. F.; Rossin, A.; Guo, X. Y.; Pham, C.; Giambastiani, G.; Pham-Huu, C. Porous silicon carbide (SiC): A chance for improving catalysts or just another active-phase carrier. Chem. Rev. 2021, 121, 10559–10665.

[98]

Shen, Z. Z.; Chen, J. H.; Li, B.; Li, G. Q.; Zhang, Z. J.; Hou, X. M. Recent progress in SiC nanowires as electromagnetic microwaves absorbing materials. J. Alloys Compd. 2020, 815, 152388.

[99]

Li, X. L.; Yin, X. W.; Xu, H. L.; Han, M. K.; Li, M. H.; Liang, S.; Cheng, L. F.; Zhang, L. T. Ultralight MXene-coated, interconnected SiCnws three-dimensional lamellar foams for efficient microwave absorption in the X-band. ACS Appl. Mater. Interfaces 2018, 10, 34524–34533.

[100]

Ma, L.; Hamidinejad, M.; Liang, C. Y.; Zhao, B.; Habibpour, S.; Yu, A. P.; Filleter, T.; Park, C. B. Enhanced electromagnetic wave absorption performance of polymer/SiC-nanowire/MXene (Ti3C2Tx) composites. Carbon 2021, 179, 408–416.

[101]

Wang, Y.; Dou, Q.; Jiang, W.; Su, K.; You, J.; Yin, S.; Wang, T.; Yang, J.; Li, Q. Ti3C2TX MXene beaded SiC nanowires for efficient microwave absorption. ACS Appl. Nano Mater. 2022, 5, 9209–9222.

[102]

Kong, L. X.; Qiao, J.; Yang, Y. F.; Zhang, X.; Wang, F. L.; Wang, Z.; Wu, L. L.; Liu, J. R. Flakes-assembled porous ZnO/Ni hybrid nanotubes for efficient electromagnetic absorption. J. Alloys Compd. 2021, 881, 160575.

[103]

Liu, J.; Cao, W. Q.; Jin, H. B.; Yuan, J.; Zhang, D. Q.; Cao, M. S. Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature. J. Mater. Chem. C 2015, 3, 4670–4677.

[104]

Qian, Y.; Wei, H. W.; Dong, J. D.; Du, Y. Z.; Fang, X. J.; Zheng, W. H.; Sun, Y. T.; Jiang, Z. X. Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption. Ceram. Int. 2017, 43, 10757–10762.

[105]

Wang, Y. Q.; Zhao, H. B.; Cheng, J. B.; Liu, B. W.; Fu, Q.; Wang, Y. Z. Hierarchical Ti3C2Tx@ZnO hollow spheres with excellent microwave absorption inspired by the visual phenomenon of eyeless urchins. Nano-Micro Lett. 2022, 14, 76.

[106]

Wang, L.; Yu, X. F.; Li, X.; Zhang, J.; Wang, M.; Che, R. C. Conductive-network enhanced microwave absorption performance from carbon coated defect-rich Fe2O3 anchored on multi-wall carbon nanotubes. Carbon 2019, 155, 298–308.

[107]

Su, J. B.; Zhao, X. L.; Zhou, W. C.; Wang, C. B.; Zhang, P. K. Fe2O3-decoration and multilayer structure design of Ti3C2 MXene materials toward strong and broadband absorption of electromagnetic waves in the X-band region. J. Mater. Sci.: Mater. Electron. 2021, 32, 25919–25932.

[108]

Huang, X. B.; Zhang, K. Y.; Peng, B. X.; Wang, G.; Muhler, M.; Wang, F. Ceria-based materials for thermocatalytic and photocatalytic organic synthesis. ACS Catal. 2021, 11, 9618–9678.

[109]

Liu, Z. W.; Zhao, Y.; Li, S.; Sun, T. P.; Liu, H. S.; Wang, K.; Chen, X. B. CeO2/Ti3C2Tx MXene nanostructures for microwave absorption. ACS Appl. Nano Mater. 2022, 5, 5764–5775.

[110]

Mei, J.; Liao, T.; Ayoko, G. A.; Bell, J.; Sun, Z. Q. Cobalt oxide-based nanoarchitectures for electrochemical energy applications. Prog. Mater. Sci. 2019, 103, 596–677.

[111]

Chai, J. X.; Cheng, J. Y.; Zhang, D. Q.; Xiong, Y. F.; Yang, X. Y.; Ba, X. W.; Ullah, S.; Zheng, G. P.; Yan, M.; Cao, M. S. Enhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheets. J. Alloys Compd. 2020, 829, 154531.

[112]

Deng, R. X.; Chen, B. B.; Li, H. G.; Zhang, K.; Zhang, T.; Yu, Y.; Song, L. X. MXene/Co3O4 composite material: Stable synthesis and its enhanced broadband microwave absorption. Appl. Surf. Sci. 2019, 488, 921–930.

[113]

Zhao, Z. Y.; Liu, Q. L. Study of the layer-dependent properties of MoS2 nanosheets with different crystal structures by DFT calculations. Catal. Sci. Technol. 2018, 8, 1867–1879.

[114]

Liang, X. H.; Zhang, X. M.; Liu, W.; Tang, D. M.; Zhang, B. S.; Ji, G. B. A simple hydrothermal process to grow MoS2 nanosheets with excellent dielectric loss and microwave absorption performance. J. Mater. Chem. C 2016, 4, 6816–6821.

[115]

Wang, H. Y.; Ma, H. B. The electromagnetic and microwave absorbing properties of MoS2 modified Ti3C2Tx nanocomposites. J. Mater. Sci.: Mater. Electron. 2019, 30, 15250–15256.

[116]

Hassan, A.; Aslam, M. A.; Bilal, M.; Khan, M. S.; ur Rehman, S.; Ma, K.; Wang, J. F.; Sheng, Z. G. Modulating dielectric loss of MoS2@Ti3C2Tx nanoarchitectures for electromagnetic wave absorption with radar cross section reduction performance verified through simulations. Ceram. Int. 2021, 47, 20706–20716.

[117]

Li, X.; Wen, C. Y.; Yang, L. T.; Zhang, R. X.; Li, Y. S.; Che, R. C. Enhanced visualizing charge distribution of 2D/2D MXene/MoS2 heterostructure for excellent microwave absorption performance. J. Alloys Compd. 2021, 869, 159365.

[118]

Liu, Z. H.; Cui, Y. H.; Li, Q.; Zhang, Q. Y.; Zhang, B. L. Fabrication of folded MXene/MoS2 composite microspheres with optimal composition and their microwave absorbing properties. J. Colloid Interface Sci. 2022, 607, 633–644.

[119]

Li, M. H.; Zhu, W. J.; Li, X.; Xu, H. L.; Fan, X. M.; Wu, H. J.; Ye, F.; Xue, J. M.; Li, X. Q.; Cheng, L. F. et al. Ti3C2Tx/MoS2 self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption. Adv. Sci. 2022, 9, 2201118.

[120]

Yang, J. J.; Wang, J. Q.; Li, H. Q.; Wu, Z.; Xing, Y. Q.; Chen, Y. F.; Liu, L. MoS2/MXene aerogel with conformal heterogeneous interfaces tailored by atomic layer deposition for tunable microwave absorption. Adv. Sci. 2022, 9, 2101988.

[121]

Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213.

[122]

Ren, H. D.; Wang, S.; Zhang, X. M.; Liu, Y.; Kong, L. B.; Li, C.; Lu, X. Y.; Chen, Y. H. Broadband electromagnetic absorption of Ti3C2Tx MXene/WS2 composite via constructing two-dimensional heterostructure. J. Am. Ceram. Soc. 2021, 104, 5537–5546.

[123]

Zhang, X.; Cai, L.; Xiang, Z.; Lu, W. Hollow CuS microflowers anchored porous carbon composites as lightweight and broadband microwave absorber with flame-retardant and thermal stealth functions. Carbon 2021, 184, 514–525.

[124]

Zhang, S. Y.; Zhao, Z. H.; Gao, Z. G.; Liu, P. B.; Jiao, J. A hollow CuS@Mn(OH)2 particle with double-shell structure for Ultra-wide band electromagnetic absorption. J. Colloid Interface Sci. 2022, 608, 60–69.

[125]

Cui, G. Z.; Wang, L. B.; Li, L.; Xie, W.; Gu, G. X. Synthesis of CuS nanoparticles decorated Ti3C2Tx MXene with enhanced microwave absorption performance. Prog. Nat. Sci.: Mater. Int. 2020, 30, 343–351.

[126]

Yang, G. Y.; Wang, S. Z.; Sun, H. T.; Yao, X. M.; Li, C. B.; Li, Y. J.; Jiang, J. J. Ultralight, conductive Ti3C2Tx MXene/PEDOT: PSS hybrid aerogels for electromagnetic interference shielding dominated by the absorption mechanism. ACS Appl. Mater. Interfaces 2021, 13, 57521–57531.

[127]

Liu, H.; Li, L.; Cui, G. Z.; Wang, X. X.; Zhang, Z.; Lv, X. L. Heterostructure composites of CoS nanoparticles decorated on Ti3C2Tx nanosheets and their enhanced electromagnetic wave absorption performance. Nanomaterials 2020, 10, 1666.

[128]

Liu, Z. Y.; Wu, C. M.; Wang, Y.; Xian, G. Y.; Zhu, Z. L.; Xie, N.; Wang, Y. F.; Liu, Y.; Kong, L. B. MXene/CoS heterostructures self-assembled through electrostatic interaction as superior microwave absorber. J. Alloys Compd. 2022, 900, 163452.

[129]

Hou, T. Q.; Jia, Z. R.; Wang, B. B.; Li, H. B.; Liu, X. H.; Bi, L.; Wu, G. L. MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber. Chem. Eng. J. 2021, 414, 128875.

[130]

Cheng, J. Y.; Zhang, H. B.; Ning, M. Q.; Raza, H.; Zhang, D. Q.; Zheng, G. P.; Zheng, Q. B.; Che, R. C. Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy. Adv. Funct. Mater. 2022, 32, 2200123.

[131]

Cao, M. S.; Wang, X. X.; Zhang, M.; Shu, J. C.; Cao, W. Q.; Yang, H. J.; Fang, X. Y.; Yuan, J. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 2019, 29, 1807398.

[132]

You, W. B.; Pei, K.; Yang, L. T.; Li, X.; Shi, X. F.; Yu, X. F.; Guo, H. Q.; Che, R. C. In situ dynamics response mechanism of the tunable length-diameter ratio nanochains for excellent microwave absorber. Nano Res. 2020, 13, 72–78.

[133]

Pan, F.; Yu, L. Z.; Xiang, Z.; Liu, Z. C.; Deng, B. W.; Cui, E. B.; Shi, Z.; Li, X.; Lu, W. Improved synergistic effect for achieving ultrathin microwave absorber of 1D Co nanochains/2D carbide MXene nanocomposite. Carbon 2021, 172, 506–515.

[134]

Li, X.; You, W. B.; Wang, L.; Liu, J. W.; Wu, Z. C.; Pei, K.; Li, Y. S.; Che, R. C. Self-assembly-magnetized MXene avoid dual-agglomeration with enhanced interfaces for strong microwave absorption through a tunable electromagnetic property. ACS Appl. Mater. Interfaces 2019, 11, 44536–44544.

[135]

Li, N.; Xie, X.; Lu, H. X.; Fan, B. B.; Wang, X. H.; Zhao, B.; Zhang, R.; Yang, R. Novel two-dimensional Ti3C2TX/Ni-spheres hybrids with enhanced microwave absorption properties. Ceram. Int. 2019, 45, 22880–22888.

[136]

Liu, Y.; Zhang, S.; Su, X. L.; Xu, J.; Li, Y. Y. Enhanced microwave absorption properties of Ti3C2 MXene powders decorated with Ni particles. J. Mater. Sci. 2020, 55, 10339–10350.

[137]

Gao, Y.; Du, H.; Li, R. R.; Zhang, Q. P.; Fan, B. B.; Zhao, B.; Li, N.; Wang, X. H.; Chen, Y. Q.; Zhang, R. Multi-phase heterostructures of flower-like Ni(NiO) decorated on two-dimensional Ti3C2Tx/TiO2 for high-performance microwave absorption properties. Ceram. Int. 2021, 47, 10764–10772.

[138]

Liang, L. Y.; Yang, R. S.; Han, G. J.; Feng, Y. Z.; Zhao, B.; Zhang, R.; Wang, Y. M.; Liu, C. T. Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti3C2Tx MXene. ACS Appl. Mater. Interfaces 2020, 12, 2644–2654.

[139]

Hu, F. Y.; Wang, X. H.; Bao, S.; Song, L. M.; Zhang, S.; Niu, H. H.; Fan, B. B.; Zhang, R.; Li, H. X. Tailoring electromagnetic responses of delaminated Mo2TiC2Tx MXene through the decoration of Ni particles of different morphologies. Chem. Eng. J. 2022, 440, 135855.

[140]

Wen, C. Y.; Li, X.; Zhang, R. X.; Xu, C. Y.; You, W. B.; Liu, Z. W.; Zhao, B.; Che, R. C. High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 2022, 16, 1150–1159.

[141]

Liang, L. Y.; Han, G. J.; Li, Y.; Zhao, B.; Zhou, B.; Feng, Y. Z.; Ma, J. M.; Wang, Y. M.; Zhang, R.; Liu, C. T. Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 2019, 11, 25399–25409.

[142]

Cui, Y. H.; Liu, Z. H.; Zhang, Y. F.; Liu, P.; Ahmad, M.; Zhang, Q. Y.; Zhang, B. L. Wrinkled three-dimensional porous MXene/Ni composite microspheres for efficient broadband microwave absorption. Carbon 2021, 181, 58–68.

[143]

Zhang, X. F.; Li, Y. X.; Liu, R. G.; Rao, Y.; Rong, H. W.; Qin, G. W. High-magnetization FeCo nanochains with ultrathin interfacial gaps for broadband electromagnetic wave absorption at gigahertz. ACS Appl. Mater. Interfaces 2016, 8, 3494–3498.

[144]

He, J.; Shan, D. Y.; Yan, S. Q.; Luo, H.; Cao, C.; Peng, Y. H. Magnetic FeCo nanoparticles-decorated Ti3C2 MXene with enhanced microwave absorption performance. J. Magn. Magn. Mater. 2019, 492, 165639.

[145]

Li, X.; Wen, C. Y.; Yang, L. T.; Zhang, R. X.; Li, X. H.; Li, Y. S.; Che, R. C. MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy. Carbon 2021, 175, 509–518.

[146]

Zhou, C. L.; Wang, X. X.; Luo, H.; Deng, L. W.; Wang, S. L.; Wei, S.; Zheng, Y. W.; Jia, Q.; Liu, J. Q. Interfacial design of sandwich-like CoFe@Ti3C2Tx composites as high efficient microwave absorption materials. Appl. Surf. Sci. 2019, 494, 540–550.

[147]

He, J.; Liu, X. Y.; Deng, Y. H.; Peng, Y. H.; Deng, L. W.; Luo, H.; Cheng, C. P.; Yan, S. Q. Improved magnetic loss and impedance matching of the FeNi-decorated Ti3C2Tx MXene composite toward the broadband microwave absorption performance. J. Alloys Compd. 2021, 862, 158684.

[148]

Peng, Y. H.; Deng, L. W.; Luo, H.; Huang, S. X. Tailoring microwave electromagnetic responses in Ti3C2Tx MXene with CoNi-alloy nanoparticles decoration via mildd hydrothermal method. Results Phys. 2020, 19, 103516.

[149]

Xie, X. B.; Wang, B. L.; Wang, Y.; Ni, C.; Sun, X.; Du, W. Spinel structured MFe2O4 (M = Fe, Co, Ni, Mn, Zn) and their composites for microwave absorption: A review. Chem. Eng. J. 2022, 428, 131160.

[150]

Zhang, X.; Wang, H. H.; Hu, R.; Huang, C. Y.; Zhong, W. J.; Pan, L. M.; Feng, Y. B.; Qiu, T.; Zhang, C. F.; Yang, J. Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles. Appl. Surf. Sci. 2019, 484, 383–391.

[151]

Li, Y. Y.; Gao, Y.; Fan, B. B.; Guan, L.; Zhao, B.; Zhang, R. Tailoring microwave electromagnetic responses in Ti3C2Tx MXene with Fe3O4 nanoparticle decoration via a solvothermal method. J. Phys. Chem. C 2021, 125, 19914–19924.

[152]

Liu, P. J.; Ng, V. M. H.; Yao, Z. J.; Zhou, J. T.; Kong, L. B. Ultrasmall Fe3O4 nanoparticles on MXenes with high microwave absorption performance. Mater. Lett. 2018, 229, 286–289.

[153]

Liu, P. J.; Chen, S. X.; Yao, M.; Yao, Z. J.; Ng, V. M. H.; Zhou, J. T.; Lei, Y. M.; Yang, Z. H.; Kong, L. B. Double-layer absorbers based on hierarchical MXene composites for microwave absorption through optimal combination. J. Mater. Res. 2020, 35, 1481–1491.

[154]

Xu, J. J.; Tang, S. Y.; Liu, D.; Bai, Z. H.; Xie, X. Y.; Tian, X. S.; Xu, W. T.; Hou, W. J.; Meng, X. X.; Yang, N. T. Rational design of hollow Fe3O4 microspheres on Ti3C2Tx MXene nanosheets as highly-efficient and lightweight electromagnetic absorbers. Ceram. Int. 2022, 48, 2595–2604.

[155]

Deng, B. W.; Liu, Z. C.; Pan, F.; Xiang, Z.; Zhang, X.; Lu, W. Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe3O4 nanoparticle hybrids with high electromagnetic absorption performance and improved impendence matching. J. Mater. Chem. A 2021, 9, 3500–3510.

[156]

Deng, R. X.; Chen, B. B.; Li, H. G.; Li, Z.; Zhang, T.; Yu, Y.; Song, L. X. Adjustable electromagnetic response of ultralight 3D Ti3C2Tx composite via control of crystal defects. Appl. Surf. Sci. 2021, 569, 151053.

[157]

Li, X.; Zhang, M.; You, W. B.; Pei, K.; Zeng, Q. W.; Han, Q.; Li, Y. S.; Cao, H.; Liu, X. H.; Che, R. C. Magnetized MXene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray-drying method. ACS Appl. Mater. Interfaces 2020, 12, 18138–18147.

[158]

He, J.; Liu, S.; Deng, L. W.; Shan, D. Y.; Cao, C.; Luo, H.; Yan, S. Q. Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites. Appl. Surf. Sci. 2020, 504, 144210.

[159]

Shan, D. Y.; He, J.; Deng, L. W.; Yan, S. Q.; Luo, H.; Huang, S. X.; Xu, Y. C. The underlying mechanisms of enhanced microwave absorption performance for the NiFe2O4-decorated Ti3C2Tx MXene. Results Phys. 2019, 15, 102750.

[160]

Guo, Y.; Wang, D. D.; Bai, T. T.; Liu, H.; Zheng, Y. J.; Liu, C. T.; Shen, C. Y. Electrostatic self-assembled NiFe2O4/Ti3C2Tx MXene nanocomposites for efficient electromagnetic wave absorption at ultralow loading level. Adv. Compos. Hybrid Mater. 2021, 4, 602–613.

[161]

Qiu, F.; Wang, Z. Y.; Liu, M.; Wang, Z. M.; Ding, S. Synthesis, characterization and microwave absorption of MXene/NiFe2O4 composites. Ceram. Int. 2021, 47, 24713–24720.

[162]

Hou, T. Q.; Wang, B. B.; Ma, M. L.; Feng, A. L.; Huang, Z. Y.; Zhang, Y.; Jia, Z. R.; Tan, G. X.; Cao, H. J.; Wu, G. L. Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties. Compos. Part B: Eng. 2020, 180, 107577.

[163]

Zeng, X. J.; Zhao, C.; Yin, Y. C.; Nie, T. L.; Xie, N. H.; Yu, R. H.; Stucky, G. D. Construction of NiCo2O4 nanosheets-covered Ti3C2Tx MXene heterostructure for remarkable electromagnetic microwave absorption. Carbon 2022, 193, 26–34.

[164]

Yang, H. B.; Dai, J. J.; Liu, X.; Lin, Y.; Wang, J. J.; Wang, L.; Wang, F. Layered PVB/Ba3Co2Fe24O41/Ti3C2 Mxene composite: Enhanced electromagnetic wave absorption properties with high impedance match in a wide frequency range. Mater. Chem. Phys. 2017, 200, 179–186.

[165]

Liu, P. J.; Yao, Z. J.; Ng, V. M. H.; Zhou, J. T.; Kong, L. B. Novel multilayer-like structure of Ti3C2Tx/CNZF composites for low-frequency electromagnetic absorption. Mater. Lett. 2019, 248, 214–217.

[166]

Guo, S. Y.; Guan, H. L.; Li, Y.; Bao, Y. F.; Lei, D. Y.; Zhao, T. J.; Zhong, B. M.; Li, Z. H. Dual-loss Ti3C2Tx MXene/Ni0.6Zn0.4Fe2O4 heterogeneous nanocomposites for highly efficient electromagnetic wave absorption. J. Alloys Compd. 2021, 887, 161298.

[167]

Shu, J. C.; Yang, X. Y.; Zhang, X. R.; Huang, X. Y.; Cao, M. S.; Li, L.; Yang, H. J.; Cao, W. Q. Tailoring MOF-based materials to tune electromagnetic property for great microwave absorbers and devices. Carbon 2020, 162, 157–171.

[168]

Shu, J. C.; Cao, W. Q.; Cao, M. S. Diverse metal-organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 2021, 31, 2100470.

[169]

Deng, B. W.; Xiang, Z.; Xiong, J.; Liu, Z. C.; Yu, L. Z.; Lu, W. Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett. 2020, 12, 55.

[170]

Deng, B. W.; Wang, L. H.; Xiang, Z.; Liu, Z. C.; Pan, F.; Lu, W. Rational construction of MXene/Ferrite@C hybrids with improved impedance matching for high-performance electromagnetic absorption applications. Mater. Lett. 2021, 284, 129029.

[171]

Liao, Q.; He, M.; Zhou, Y. M.; Nie, S. X.; Wang, Y. J.; Wang, B. B.; Yang, X. M.; Bu, X. H.; Wang, R. L. Rational construction of Ti3C2Tx/Co-MOF-derived laminated Co/TiO2-C hybrids for enhanced electromagnetic wave absorption. Langmuir 2018, 34, 15854–15863.

[172]

Han, X. P.; Huang, Y.; Ding, L.; Song, Y.; Li, T. H.; Liu, P. B. Ti3C2Tx MXene nanosheet/metal-organic framework composites for microwave absorption. ACS Appl. Nano Mater. 2021, 4, 691–701.

[173]

Cai, L.; Pan, F.; Zhu, X. J.; Dong, Y. Y.; Shi, Y. Y.; Xiang, Z.; Cheng, J.; Jiang, H. J.; Shi, Z.; Lu, W. Etching engineering and electrostatic self-assembly of N-doped MXene/hollow Co-ZIF hybrids for high-performance microwave absorbers. Chem. Eng. J. 2022, 434, 133865.

[174]

Zhou, J.; Zhang, G. P.; Luo, J. L.; Hu, Y. B.; Hao, G. Z.; Guo, H.; Guo, F.; Wang, S. W.; Jiang, W. A MOFs-derived 3D superstructure nanocomposite as excellent microwave absorber. Chem. Eng. J. 2021, 426, 130725.

[175]

Wang, M.; Zhou, P. P.; Feng, T.; Song, Z.; Ren, Q. G.; Gu, H. D.; Shi, X. Q.; Zhang, Q. T.; Wang, L. X. Ni-MOF/Ti3C2Tx derived multidimensional hierarchical Ni/TiO2/C nanocomposites with lightweight and efficient microwave absorption. Ceram. Int. 2022, 48, 22681–22690.

[176]

Hou, T. Q.; Jia, Z. R.; Wang, B. B.; Li, H. B.; Liu, X. H.; Chi, Q. G.; Wu, G. L. Metal-organic framework-derived NiSe2-CoSe2@C/Ti3C2Tx composites as electromagnetic wave absorbers. Chem. Eng. J. 2021, 422, 130079.

[177]

Wang, H. Y.; Sun, X. B.; Wang, G. S. A MXene-modulated 3D crosslinking network of hierarchical flower-like MOF derivatives towards ultra-efficient microwave absorption properties. J. Mater. Chem. A 2021, 9, 24571–24581.

[178]

Wu, F.; Liu, Z. H.; Wang, J. Q.; Shah, T.; Liu, P.; Zhang, Q. Y.; Zhang, B. L. Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties. Chem. Eng. J. 2021, 422, 130591.

[179]

Wang, H. Y.; Sun, X. B.; Yang, S. H.; Zhao, P. Y.; Zhang, X. J.; Wang, G. S.; Huang, Y. 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 2021, 13, 206.

[180]

Chen, F.; Zhang, S. S.; Ma, B. B.; Xiong, Y.; Luo, H.; Cheng, Y. Z.; Li, X. C.; Wang, X.; Gong, R. Z. Bimetallic CoFe-MOF@Ti3C2Tx MXene derived composites for broadband microwave absorption. Chem. Eng. J. 2022, 431, 134007.

[181]

Ling, X.; Wang, K. F.; Zhang, W.; Wu, Y.; Jin, Q. J.; Zhang, D. Bio-inspired, bimetal ZIF-derived hollow carbon/MXene microstructure aim for superior microwave absorption. J. Colloid Interface Sci. 2022, 625, 317–327.

[182]

Liang, C. B.; Gu, Z. J.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 2021, 13, 181.

[183]

Wan, H. J.; Liu, N.; Tang, J.; Wen, Q. Y.; Xiao, X. Substrate-independent Ti3C2Tx MXene waterborne paint for terahertz absorption and shielding. ACS Nano 2021, 15, 13646–13652.

[184]

Ji, B.; Fan, S. W.; Kou, S. J.; Xia, X. Y.; Deng, J. L.; Cheng, L. F.; Zhang, L. T. Microwave absorption properties of multilayer impedance gradient absorber consisting of Ti3C2TX MXene/polymer films. Carbon 2021, 181, 130–142.

[185]

Chen, Y. M.; Zhang, L.; Yang, Y.; Pang, B.; Xu, W. H.; Duan, G. G.; Jiang, S. H.; Zhang, K. Recent progress on nanocellulose aerogels: Preparation, modification, composite fabrication, applications. Adv. Mater. 2021, 33, 2005569.

[186]

Jiang, Y.; Xie, X.; Chen, Y.; Liu, Y. J.; Yang, R.; Sui, G. X. Hierarchically structured cellulose aerogels with interconnected MXene networks and their enhanced microwave absorption properties. J. Mater. Chem. C 2018, 6, 8679–8687.

[187]

Qian, S. B.; Liu, G.; Yan, M.; Wu, C. Flexible MXene/cellulose nanofiber aerogels for efficient electromagnetic absorption. ACS Appl. Nano Mater. 2022, 5, 9771–9779.

[188]

Yang, M. L.; Yuan, Y.; Li, Y.; Sun, X. X.; Wang, S. S.; Liang, L.; Ning, Y. H.; Li, J. J.; Yin, W. L.; Li, Y. B. Anisotropic electromagnetic absorption of aligned Ti3C2Tx MXene/gelatin nanocomposite aerogels. ACS Appl. Mater. Interfaces 2020, 12, 33128–33138.

[189]

Dai, Y.; Wu, X. Y.; Liu, Z. S.; Zhang, H. B.; Yu, Z. Z. Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption. Compos. Part B: Eng. 2020, 200, 108263.

[190]

Tong, Y.; He, M.; Zhou, Y. M.; Nie, S. X.; Zhong, X.; Fan, L. D.; Huang, T. Y.; Liao, Q.; Wang, Y. J. Three-dimensional hierarchical architecture of the TiO2/Ti3C2Tx/RGO ternary composite aerogel for enhanced electromagnetic wave absorption. ACS Sustainable Chem. Eng. 2018, 6, 8212–8222.

[191]

Wu, Z. C.; Yang, Z. Q.; Jin, C.; Zhao, Y. H.; Che, R. C. Accurately engineering 2D/2D/0D heterojunction in hierarchical Ti3C2Tx MXene nanoarchitectures for electromagnetic wave absorption and shielding. ACS Appl. Mater. Interfaces 2021, 13, 5866–5876.

[192]

Chang, M.; Jia, Z. R.; He, S. Q.; Zhou, J. X.; Zhang, S.; Tian, M. L.; Wang, B. B.; Wu, G. L. Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability. Compos. Part B: Eng. 2021, 225, 109306.

[193]

Yang, K.; Cui, Y. H.; Wan, L. Y.; Wang, Y. B.; Tariq, M. R.; Liu, P.; Zhang, Q. Y.; Zhang, B. L. Preparation of three-dimensional Mo2C/NC@MXene and its efficient electromagnetic absorption properties. ACS Appl. Mater. Interfaces 2022, 14, 7109–7120.

[194]

Wang, J. Q.; Zhang, F. R.; Li, Y. L.; Ahmad, M.; Liu, P.; Zhang, Q. Y.; Zhang, B. L. Constructing TCNFs/MXene/TiO2 microspheres with wrinkled surface for excellent electromagnetic wave absorption. J. Alloys Compd. 2022, 918, 165623.

[195]

Wang, J. Q.; Liu, L.; Jiao, S. L.; Ma, K. J.; Lv, J.; Yang, J. J. Hierarchical carbon fiber@MXene@MoS2 core–sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 2020, 30, 2002595.

[196]

Jin, D.; Du, Y. G.; Yang, X. L.; Chen, T. T. Facile synthesis of Ti3C2TX-MXene composite with polyhedron Fe3O4/carbonyl iron toward microwave absorption. J. Mater. Sci.: Mater. Electron. 2021, 32, 23762–23775.

[197]

Zhang, Q.; Xu, D. W.; Si, Y. F.; Xu, R. X.; Luo, B. L.; He, S. Y.; Liu, D. Ti3C2TX MXene nanosheets decorated with magnetic Co nanoparticles and CoO nanosheets for microwave absorption. ACS Appl. Nano Mater. 2022, 5, 7175–7186.

[198]

Luo, W.; Wang, M. Y.; Wang, K. J.; Yan, P.; Huang, J. L.; Gao, J.; Zhao, T.; Ding, Q.; Qiu, P. P.; Wang, H. F. et al. A robust hierarchical MXene/Ni/aluminosilicate glass composite for high-performance microwave absorption. Adv. Sci. 2022, 9, 2104163.

[199]

Li, X.; Wu, Z. C.; You, W. B.; Yang, L. T.; Che, R. C. Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber. Nano-Micro Lett. 2022, 14, 73.

[200]

Cui, Y. H.; Yang, K.; Wang, J. Q.; Shah, T.; Zhang, Q. Y.; Zhang, B. L. Preparation of pleated RGO/MXene/Fe3O4 microsphere and its absorption properties for electromagnetic wave. Carbon 2021, 172, 1–14.

[201]

Cui, C.; Guo, R. H.; Ren, E. H.; Xiao, H. Y.; Zhou, M.; Lai, X. X.; Qin, Q.; Jiang, S. X.; Qin, W. F. MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave. Chem. Eng. J. 2021, 405, 126626.

[202]

Wu, X. F.; Huang, J.; Gu, H. L.; Li, N.; Wang, Y.; Chen, G.; Dong, C. J.; Guan, H. T. Ternary MXene/MnO2/Ni composites for excellent electromagnetic absorption with tunable effective absorption bandwidth. J. Alloys Compd. 2022, 911, 165122.

[203]

Wu, X. F.; Huang, J.; Gu, H. L.; Chen, S. Y.; Li, N.; Wang, Y.; Dong, C. J.; Chen, G.; Guan, H. T. Ni doping in MnO2/MXene (Ti3C2Tx) composites to modulate the oxygen vacancies for boosting microwave absorption. ACS Appl. Electron. Mater. 2022, 4, 3694–3706.

[204]

Li, S. S.; Tang, X. W.; Zhao, X.; Lu, S. J.; Luo, J. T.; Chai, Z. Y.; Ma, T. T.; Lan, Q. Q.; Ma, P. M.; Dong, W. F. et al. Hierarchical graphene@MXene composite foam modified with flower-shaped FeS for efficient and broadband electromagnetic absorption. J. Mater. Sci. Technol. 2023, 133, 238–248.

[205]

Zhao, G. L.; Lv, H. P.; Zhou, Y.; Zheng, X. T.; Wu, C.; Xu, C. Self-assembled sandwich-like MXene-derived nanocomposites for enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2018, 10, 42925–42932.

[206]

Wang, Z. H.; Yang, L. X.; Zhou, Y.; Xu, C.; Yan, M.; Wu, C. NiFe LDH/MXene derivatives interconnected with carbon fabric for flexible electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2021, 13, 16713–16721.

[207]

Cheng, J. B.; Liu, B. W.; Wang, Y. Q.; Zhao, H. B.; Wang, Y. Z. Growing CoNi nanoalloy@N-doped carbon nanotubes on MXene sheets for excellent microwave absorption. J. Mater. Sci. Technol. 2022, 130, 157–165.

[208]

Zhang, C.; Wu, Z. C.; Xu, C. Y.; Yang, B. T.; Wang, L.; You, W. B.; Che, R. C. Hierarchical Ti3C2Tx MXene/carbon nanotubes hollow microsphere with confined magnetic nanospheres for broadband microwave absorption. Small 2022, 18, 2104380.

[209]

Wang, B. J.; Li, S. K.; Huang, F. Z.; Wang, S. P.; Zhang, H.; Liu, F. H.; Liu, Q. C. Construction of multiple electron transfer paths in 1D core-shell hetetrostructures with MXene as interlayer enabling efficient microwave absorption. Carbon 2022, 187, 56–66.

[210]

Li, X.; You, W. B.; Xu, C. Y.; Wang, L.; Yang, L. T.; Li, Y. S.; Che, R. C. 3D seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 2021, 13, 157.

[211]

Zou, Z.; Ning, M. Q.; Lei, Z. K.; Zhuang, X. H.; Tan, G. G.; Hou, J. H.; Xu, H.; Man, Q. K.; Li, J. B.; Li, R. W. 0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2-18 GHz. Carbon 2022, 193, 182–194.

[212]

Hou, T. Q.; Jia, Z. R.; Dong, Y. H.; Liu, X. H.; Wu, G. L. Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 133919.

[213]

Liu, X. M.; Chai, N.; Yu, Z. J.; Xu, H. L.; Li, X. L.; Liu, J. Q.; Yin, X. W.; Riedel, R. Ultra-light, high flexible and efficient CNTs/Ti3C2-sodium alginate foam for electromagnetic absorption application. J. Mater. Sci. Technol. 2019, 35, 2859–2867.

[214]

Zhou, Y. L.; Wu, M.; Jiang, J.; Yang, P.; Rao, T. K.; Liou, J. J.; Liao, W. G. Self-assembling SiC nanoflakes/MXenes composites embedded in polymers towards efficient electromagnetic wave attenuation. Appl. Surf. Sci. 2022, 574, 151463.

[215]

Wang, Y.; Gao, X.; Zhang, L. J.; Wu, X. M.; Wang, Q. G.; Luo, C. Y.; Wu, G. L. Synthesis of Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band electromagnetic absorber. Appl. Surf. Sci. 2019, 480, 830–838.

[216]

Lei, Y. M.; Yao, Z. J.; Li, S. Z.; Zhou, J. T.; Haidry, A. A.; Liu, P. J. Broadband high-performance electromagnetic wave absorption of Co-doped NiZn ferrite/polyaniline on MXenes. Ceram. Int. 2020, 46, 10006–10015.

[217]

Gao, X. R.; Wang, B. B.; Wang, K. K.; Xu, S.; Liu, S. P.; Liu, X. H.; Jia, Z. R.; Wu, G. L. Design of Ti3C2Tx/TiO2/PANI multi-layer composites for excellent electromagnetic wave absorption performance. J. Colloid Interface Sci. 2021, 583, 510–521.

[218]

Pan, F.; Rao, Y. P.; Batalu, D.; Cai, L.; Dong, Y. Y.; Zhu, X. J.; Shi, Y. Y.; Shi, Z.; Liu, Y. W.; Lu, W. Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 2022, 14, 140.

[219]

Wang, S. J.; Li, D. S.; Zhou, Y.; Jiang, L. Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 2020, 14, 8634–8645.

[220]

Xiang, Z.; Shi, Y. Y.; Zhu, X. J.; Cai, L.; Lu, W. Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 2021, 13, 150.

[221]

Xiang, Z.; Wang, X.; Zhang, X.; Shi, Y. Y.; Cai, L.; Zhu, X. J.; Dong, Y. Y.; Lu, W. Self-assembly of nano/microstructured 2D Ti3CNTx MXene-based composites for electromagnetic pollution elimination and Joule energy conversion application. Carbon 2022, 189, 305–318.

[222]

Liu, J.; Zhang, H. B.; Xie, X.; Yang, R.; Liu, Z. S.; Liu, Y. F.; Yu, Z. Z. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 2018, 14, 1802479.

[223]

Liang, L. Y.; Li, Q. M.; Yan, X.; Feng, Y. Z.; Wang, Y. M.; Zhang, H. B.; Zhou, X. P.; Liu, C. T.; Shen, C. Y.; Xie, X. L. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 2021, 15, 6622–6632.

[224]

Wang, K. F.; Chu, W. S.; Li, H.; Chen, Y. J.; Cai, Y. L.; Liu, H. Z. Ferromagnetic Ti3CNCl2-decorated RGO aerogel: From 3D interconnecting conductive network construction to ultra-broadband microwave absorber with thermal insulation property. J. Colloid Interface Sci. 2021, 604, 402–414.

[225]

Wang, J. Q.; Wu, Z.; Xing, Y. Q.; Liu, L. A novel 1D/2D interpenetrating network architecture of MXene/cellulose composite microfiber and graphene for broadband microwave absorption. Chem. Eng. J. 2022, 439, 135734.

[226]

Cheng, H. R.; Pan, Y. M.; Wang, X.; Liu, C. T.; Shen, C. Y.; Schubert, D. W.; Guo, Z. H.; Liu, X. H. Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 2022, 14, 63.

[227]

Hu, D. W.; Jiang, P. K.; Huang, X. Y. Mixed-dimensional engineering of 3D MXene ultralight hybrid aerogel for anticorrosive and microwave absorption applications. Compos. Part A: Appl. Sci. Manuf. 2022, 156, 106865.

[228]

Cui, Y. H.; Yang, K.; Zhang, F. R.; Lyu, Y.; Zhang, Q. Y.; Zhang, B. L. Ultra-light MXene/CNTs/PI aerogel with neat arrangement for electromagnetic wave absorption and photothermal conversion. Compos. Part A: Appl. Sci. Manuf. 2022, 158, 106986.

[229]

Tang, Y.; Yang, C. H.; Xu, X. T.; Kang, Y. Q.; Henzie, J.; Que, W. X.; Yamauchi, Y. MXene nanoarchitectonics: Defect-engineered 2D MXenes towards enhanced electrochemical water splitting. Adv. Energy Mater. 2022, 12, 2103867.

[230]

Yu, Y. H.; Yi, P.; Xu, W. B.; Sun, X.; Deng, G.; Liu, X. F.; Shui, J. L.; Yu, R. H. Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 2022, 14, 77.

[231]

Shu, J. C.; Cao, M. S.; Zhang, M.; Wang, X. X.; Cao, W. Q.; Fang, X. Y.; Cao, M. Q. Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 2020, 30, 1908299.

[232]

Li, L.; Cheng, Y. F.; Cao, H. H.; Liang, Z. S.; Liu, Z. Y.; Yan, S. W.; Li, L. Y.; Jia, S. F.; Wang, J. B.; Gao, Y. H. MXene/rGO/PS spheres multiple physical networks as high-performance pressure sensor. Nano Energy 2022, 95, 106986.

[233]

Nemani, S. K.; Zhang, B. W.; Wyatt, B. C.; Hood, Z. D.; Manna, S.; Khaledialidusti, R.; Hong, W. C.; Sternberg, M. G.; Sankaranarayanan, S. K. R. S.; Anasori, B. High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 2021, 15, 12815–12825.

[234]

Liu, N.; Li, Q. Q.; Wan, H. J.; Chang, L. B.; Wang, H.; Fang, J. H.; Ding, T. P.; Wen, Q. Y.; Zhou, L. J.; Xiao, X. High-temperature stability in air of Ti3C2Tx MXene-based composite with extracted bentonite. Nat. Commun. 2022, 13, 5551.

[235]

Zhao, Z. H.; Zhang, L. M.; Wu, H. J. Hydro/organo/ionogels: “Controllable” electromagnetic wave absorbers. Adv. Mater. 2022, 34, 2205376.

Nano Research
Pages 10287-10325
Cite this article:
Guo H, Wang X, Pan F, et al. State of the art recent advances and perspectives in 2D MXene-based microwave absorbing materials: A review. Nano Research, 2023, 16(7): 10287-10325. https://doi.org/10.1007/s12274-023-5509-1
Topics:

1899

Views

18

Crossref

18

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 18 November 2022
Revised: 01 January 2023
Accepted: 16 January 2023
Published: 07 June 2023
© Tsinghua University Press 2023
Return