AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

β-Cyclodextrin-modified AuBi metallic aerogels enable efficient peroxidase mimicking for colorimetric sensing of urease-positive pathogenic bacteria

Minghui WangPeixian WuSha YangGui-long WuNa LiXiaofeng Tan( )Qinglai Yang( )
Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China
Show Author Information

Graphical Abstract

β-Cyclodextrin/AuBi aerogels are prepared based on the surface modification and one-pot reduction strategy. The introduction of β-cyclodextrin (featured with a hydrophobic cavity and hydrophilic surface) could effectively boost the catalytic activity of AuBi aerogels by engendering host–guest complex and improving dispersity/stability. By utilizing the specific urea hydrolysis by urease for producing NH3 to raise pH, the pH up-regulation would inhibit the peroxidase-mimicking performances of β-cyclodextrin/AuBi aerogels. Therefore, the sensitive colorimetric detection platform for urease activity, urease-positive P. mirabilis, and fluoride ion could be constructed.

Abstract

The detection of pathogenic bacteria with improved accessibility, reduced analysis time, and increased sensitivity is of great importance for diagnosing the infected disease. Nanozymes have attracted rising attention in the bioassay field. Designing a model nanozyme needs the combined merit of sensible nanostructures and a large specific surface area to guarantee exceptional enzyme-mimic activity. Herein, a β-cyclodextrin modified AuBi aerogel is prepared by a one-pot reduction strategy. The introduction of β-cyclodextrin (featured with a hydrophobic cavity and hydrophilic surface) enhances the catalytic activity of AuBi aerogels by engendering host–guest complex and improving dispersity/stability. Based on the specific urea hydrolysis, which could produce NH3 to raise pH by urease, the pH up-regulation would inhibit the peroxidase-mimicking performances of β-cyclodextrin/AuBi aerogels. Therefore, the sensitive colorimetric detection platform for urease activity could be constructed. Moreover, the sensing platform can detect straightforwardly urease-positive Proteus mirabilis in urine circumstances with a wide detection range and a low limit of detection (LOD) of 4 colony-forming unit (CFU)·mL−1. The reproducibility, stability, and specificity of this approach are verified to be satisfactory. Also, as an inhibitor of urease activity, the fluoride ion could be detected by the constructed sensing platform sensitively and specifically. Overall, this work provides a blueprint for designing an ideal nanozyme and paves a new roadway for detecting pathogenic bacteria.

Electronic Supplementary Material

Download File(s)
12274_2023_5519_MOESM1_ESM.pdf (1.5 MB)

References

[1]

Rippa, M.; Castagna, R.; Pannico, M.; Musto, P.; Borriello, G.; Paradiso, R.; Galiero, G.; Bolletti Censi, S.; Zhou, J.; Zyss, J. et al. Octupolar metastructures for a highly sensitive, rapid, and reproducible phage-based detection of bacterial pathogens by surface-enhanced Raman scattering. ACS Sens. 2017, 2, 947–954.

[2]

Wang, J. C.; Chi, S. W.; Yang, T. H.; Chuang, H. S. Label-free monitoring of microorganisms and their responses to antibiotics based on self-powered microbead sensors. ACS Sens. 2018, 3, 2182–2190.

[3]

Hameed, S.; Xie, L. J.; Ying, Y. B. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends Food Sci. Technol. 2018, 81, 61–73.

[4]

Al Ramahi, R.; Zaid, A. N.; Abu-Khalaf, N. Evaluating the potential use of electronic tongue in early identification and diagnosis of bacterial infections. Infect. Drug Resist. 2019, 12, 2445–2451.

[5]

Majdinasab, M.; Hayat, A.; Marty, J. L. Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples. TrAC Trends Anal. Chem. 2018, 107, 60–77.

[6]

Laliwala, A.; Svechkarev, D.; Sadykov, M. R.; Endres, J.; Bayles, K. W.; Mohs, A. M. Simpler procedure and improved performance for pathogenic bacteria analysis with a paper-based ratiometric fluorescent sensor array. Anal. Chem. 2022, 94, 2615–2624.

[7]

Santopolo, G.; Clemente, A.; Rojo-Molinero, E.; Oliver, A.; Noé, C. de la Rica, R. Rapid identification and classification of pathogens that produce carbapenemases and cephalosporinases with a colorimetric paper-based multisensor. Anal. Chem. 2022, 94, 9442–9449.

[8]
Zhou, J.; Tian, F. Y.; Fu, R. J.; Yang, Y. J.; Jiao, B. N.; He, Y. Enzyme-nanozyme cascade reaction-mediated etching of gold nanorods for the detection of Escherichia coli. ACS Appl. Nano Mater. 2020, 3, 9016–9025.
[9]
Eissa, S.; Zourob, M. Ultrasensitive peptide-based multiplexed electrochemical biosensor for the simultaneous detection of Listeria monocytogenes and Staphylococcus aureus. Microchim. Acta 2020, 187, 486.
[10]

Zhao, L. L.; Wiebe, J.; Zahoor, R.; Slavkovic, S.; Malile, B.; Johnson, P. E.; Chen, J. I. L. Colorimetric detection of catalase and catalase-positive bacteria (E. coli) using silver nanoprisms. Anal. Methods 2016, 8, 6625–6630.

[11]

Chen, P. P.; Wang, Y.; Meng, Y. M.; He, Y. Q.; Xiong, Y.; Ao, K. P.; Huang, J.; Chen, J.; Xie, Y.; Ying, B. W. Color and distance two-dimensional visual and homogeneous dual fluorescence analysis of pathogenic bacteria in clinical samples. Sens. Actuators B:Chem. 2022, 357, 131422.

[12]

Sun, Z. W.; Peng, Y.; Wang, M. H.; Lin, Y. X.; Jalalah, M.; Alsareii, S. A.; Harraz, F. A.; Yang, J.; Li, G. X. Electrochemical deposition of Cu metal-organic framework films for the dual analysis of pathogens. Anal. Chem. 2021, 93, 8994–9001.

[13]

Bishai, W. R.; Timmins, G. S. Potential for breath test diagnosis of urease positive pathogens in lung infections. J. Breath Res. 2019, 13, 032002.

[14]

Gong, Z. L.; Shi, X. L.; Bai, F.; He, X. L.; Zhang, H. Y.; Li, Y. B.; Wan, Y.; Lin, Y. M.; Qiu, Y. Q.; Chen, Q. C. et al. Characterization of a novel diarrheagenic strain of Proteus mirabilis associated with food poisoning in China. Front. Microbiol. 2019, 10, 2810.

[15]

Hu, W. C.; Pang, J.; Biswas, S.; Wang, K.; Wang, C.; Xia, X. H. Ultrasensitive detection of bacteria using a 2D MOF nanozyme-amplified electrochemical detector. Anal. Chem. 2021, 93, 8544–8552.

[16]

Hao, Z.; Lin, X. D.; Li, J. J.; Yin, Y. L.; Gao, X.; Wang, S.; Liu, Y. Q. Multifunctional nanoplatform for dual-mode sensitive detection of pathogenic bacteria and the real-time bacteria inactivation. Biosens. Bioelectron. 2021, 173, 112789.

[17]

Yang, E. L.; Li, D.; Yin, P. K.; Xie, Q. Y.; Li, Y.; Lin, Q. Y.; Duan, Y. X. A novel surface-enhanced Raman scattering (SERS) strategy for ultrasensitive detection of bacteria based on three-dimensional (3D) DNA walker. Biosens. Bioelectron. 2021, 172, 112758.

[18]

Robby, A. I.; Kim, S. G.; Lee, U. H.; In, I.; Lee, G.; Park, S. Y. Wireless electrochemical and luminescent detection of bacteria based on surface-coated CsWO3-immobilized fluorescent carbon dots with photothermal ablation of bacteria. Chem. Eng. J. 2021, 403, 126351.

[19]
Yao, W. Y.; Shi, J.; Ling, J.; Guo, Y. D.; Ding, C. S.; Ding, Y. J. SiC-functionalized fluorescent aptasensor for determination of Proteus mirabilis. Microchim. Acta 2020, 187, 406.
[20]

Santopolo, G.; Doménech-Sánchez, A.; Russell, S. M. de la Rica, R. Ultrafast and ultrasensitive naked-eye detection of urease-positive bacteria with plasmonic nanosensors. ACS Sens. 2019, 4, 961–967.

[21]

Li, Q. L.; Li, H.; Li, K. X.; Gu, Y.; Wang, Y. J.; Yang, D. Z.; Yang, Y. L.; Gao, L. Specific colorimetric detection of methylmercury based on peroxidase-like activity regulation of carbon dots/Au NPs nanozyme. J. Hazard. Mater. 2023, 441, 129919.

[22]

Liu, P.; Wang, Y. B.; Han, L.; Cai, Y. Y.; Ren, H.; Ma, T. X.; Li, X. Q.; Petrenko, V. A.; Liu, A. H. Colorimetric assay of bacterial pathogens based on Co3O4 magnetic nanozymes conjugated with specific fusion phage proteins and magnetophoretic chromatography. ACS Appl. Mater. Interfaces 2020, 12, 9090–9097.

[23]
Xue, L.; Jin, N. N.; Guo, R. Y.; Wang, S. Y.; Qi, W. Z.; Liu, Y. J.; Li, Y. B.; Lin, J. H. Microfluidic colorimetric biosensors based on Mno2 nanozymes and convergence-divergence spiral micromixers for rapid and sensitive detection of Salmonella. ACS Sens. 2021, 6, 2883–2892.
[24]

Su, Y. T.; Wu, F.; Song, Q. X.; Wu, M. J.; Mohammadniaei, M.; Zhang, T. W.; Liu, B. L.; Wu, S. S.; Zhang, M.; Li, A. et al. Dual enzyme-mimic nanozyme based on single-atom construction strategy for photothermal-augmented nanocatalytic therapy in the second near-infrared biowindow. Biomaterials 2022, 281, 121325.

[25]

Wang, X. W.; Shi, Q. Q.; Zha, Z.; Zhu, D. D.; Zheng, L. R.; Shi, L. X.; Wei, X. W.; Lian, L.; Wu, K. L.; Cheng, L. Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Bioact. Mater. 2021, 6, 4389–4401.

[26]

Wei, H.; Gao, L. Z.; Fan, K. L.; Liu, J. W.; He, J. Y.; Qu, X. G.; Dong, S. J.; Wang, E. K.; Yan, X. Y. Nanozymes: A clear definition with fuzzy edges. Nano Today 2021, 40, 101269.

[27]

Zhang, R. F.; Yan, X. Y.; Fan, K. L. Nanozymes inspired by natural enzymes. Acc. Mater. Res. 2021, 2, 534–547.

[28]

Tang, G. H.; He, J. Y.; Liu, J. W.; Yan, X. Y.; Fan, K. L. Nanozyme for tumor therapy: Surface modification matters. Exploration 2021, 1, 75–89.

[29]

Zeng, Y. T.; Li, Y.; Tan, X. F.; Gong, J. D.; Wang, Z. Y.; An, Y. H.; Wang, Z. Q.; Li, H. B, N-doped PdRu aerogels as high-performance peroxidase mimics for sensitive detection of glucose. ACS Appl. Mater. Interfaces 2021, 13, 36816–36823.

[30]

Wang, H. J.; Fang, Q.; Gu, W. L.; Du, D.; Lin, Y. H.; Zhu, C. Z. Noble metal aerogels. ACS Appl. Mater. Interfaces 2020, 12, 52234–52250.

[31]

Xing, L.; Zheng, X. Y.; Tang, Y. L.; Zhou, X. M.; Hao, J. K.; Hu, L.; Shen, J. L.; Yan, Z. Q. Ag-β-cyclodextrin-graphene oxide ternary nanostructures with peroxidase-mimicking activity for Hg2+ detection. ACS Appl. Nano Mater. 2021, 4, 13807–13817.

[32]

Lu, W. H.; Zhang, J. X.; Li, N. L.; You, Z.; Feng, Z. Y.; Natarajan, V.; Chen, J.; Zhan, J. H. Co3O4@β-cyclodextrin with synergistic peroxidase-mimicking performance as a signal magnification approach for colorimetric determination of ascorbic acid. Sens. Actuators B:Chem. 2020, 303, 127106.

[33]

Ma, Y.; Jiang, K.; Chen, H. R.; Shi, Q. Q.; Liu, H.; Zhong, X. Y.; Qian, H. S.; Chen, X. L.; Cheng, L.; Wang, X. W. Liquid exfoliation of V8C7 nanodots as peroxidase-like nanozymes for photothermal-catalytic synergistic antibacterial treatment. Acta Biomater. 2022, 149, 359–372.

[34]

Xiao, L. P.; Zhu, A. M.; Xu, Q. C.; Chen, Y.; Xu, J.; Weng, J. Colorimetric biosensor for detection of cancer biomarker by Au nanoparticle-decorated Bi2Se3 nanosheets. ACS Appl. Mater. Interfaces 2017, 9, 6931–6940.

[35]

Wan, K.; Tan, A. D.; Yu, Z. P.; Liang, Z. X.; Piao, J. H.; Tsiakaras, P. 2D nitrogen-doped hierarchically porous carbon: Key role of low dimensional structure in favoring electrocatalysis and mass transfer for oxygen reduction reaction. Appl. Catal. B:Environ. 2017, 209, 447–454.

[36]

Wu, K. L.; Zhu, D. D.; Dai, X. L.; Wang, W. N.; Zhong, X. Y.; Fang, Z. B.; Peng, C.; Wei, X. W.; Qian, H. S.; Chen, X. L. et al. Bimetallic oxide Cu1.5Mn1.5O4 cage-like frame nanospheres with triple enzyme-like activities for bacterial-infected wound therapy. Nano Today 2022, 43, 101380.

[37]
Hong, C. Y.; Chen, L. L.; Huang, J. Y.; Shen, Y. L.; Yang, H. F.; Huang, Z. Y.; Cai, R.; Tan, W. H. Gold nanoparticle-decorated MoSe2 nanosheets as highly effective peroxidase-like nanozymes for total antioxidant capacity assay. Nano Res., in press, https://doi.org/10.1007/s12274-022-5328-9.
[38]

Xu, R. X.; Tan, X. F.; Li, T.; Liu, S. Q.; Li, Y.; Li, H. Norepinephrine-induced AuPd aerogels with peroxidase- and glucose oxidase-like activity for colorimetric determination of glucose. Microchim. Acta 2021, 188, 362.

[39]

Hong, C. Y.; Chen, L. L.; Wu, C. Y.; Yang, D.; Dai, J. Y.; Huang, Z. Y.; Cai, R.; Tan, W. H. Green synthesis of Au@WSe2 hybrid nanostructures with the enhanced peroxidase-like activity for sensitive colorimetric detection of glucose. Nano Res. 2022, 15, 1587–1592.

[40]

Xu, J.; Sun, F. Y.; Li, Q.; Yuan, H. X.; Ma, F. Y.; Wen, D.; Shang, L. Ultrasmall gold nanoclusters-enabled fabrication of ultrafine gold aerogels as novel self-supported nanozymes. Small 2022, 18, 2200525.

[41]

Jannah, F.; Kim, J. M. Ph-sensitive colorimetric polydiacetylene vesicles for urease sensing. Dyes Pigm. 2019, 169, 15–21.

[42]

Kashyap, S. J.; Sankannavar, R.; Madhu, G. M. Fluoride sources, toxicity and fluorosis management techniques—A brief review. J. Hazard. Mater. Lett. 2021, 2, 100033.

[43]

Zhou, Y.; Zhang, J. F.; Yoon, J. Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chem. Rev. 2014, 114, 5511–5571.

[44]

Mazzei, L.; Cianci, M.; Benini, S.; Ciurli, S. The structure of the elusive urease-urea complex unveils the mechanism of a paradigmatic nickel-dependent enzyme. Angew. Chem., Int. Ed. 2019, 58, 7415–7419.

[45]

Zhang, Y.; Jiao, L.; Xu, W. Q.; Chen, Y. F.; Wu, Y.; Yan, H. Y.; Gu, W. L.; Zhu, C. Z. Defect-rich and ultrathin nitrogen-doped carbon nanosheets with enhanced peroxidase-like activity for the detection of urease activity and fluoride ion. Chin. Chem. Lett. 2022, 33, 1317–1320.

Nano Research
Pages 9663-9671
Cite this article:
Wang M, Wu P, Yang S, et al. β-Cyclodextrin-modified AuBi metallic aerogels enable efficient peroxidase mimicking for colorimetric sensing of urease-positive pathogenic bacteria. Nano Research, 2023, 16(7): 9663-9671. https://doi.org/10.1007/s12274-023-5519-z
Topics:

2048

Views

5

Crossref

5

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 30 November 2022
Revised: 07 January 2023
Accepted: 18 January 2023
Published: 13 April 2023
© Tsinghua University Press 2023
Return