AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultralight aerogel sphere composed of nanocellulose-derived carbon nanofiber and graphene for excellent electromagnetic wave absorption

Runa Zhang1Bin Li1Yunfei Yang1Na Wu2( )Zhuyin Sui3Qingfu Ban3Lili Wu1Wei Liu4,5Jiurong Liu1( )Zhihui Zeng1,6( )
Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich CH-8093, Switzerland
School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, China
Shenzhen Research Institute of Shandong University, Shenzhen 518063, China
Suzhou Research Institute of Shandong University, Suzhou 215123, China
Show Author Information

Graphical Abstract

A novel type of hybrid carbon aerogel sphere composed of nanofibrous cellulose nanofiber-derived carbon (CNFC) and graphene nanosheets was manufactured via an ultrafast scalable drop-freezing approach coupled with pyrolysis. The CNFC interacts with graphene to build aerogel spheres with variable dielectric characteristics while preventing the aggregation of graphene layers. The reduced graphene oxide (RGO) helps to create lightweight high-porosity aerogel spheres by reducing the volume shrinkage of CNFC aerogel spheres during the carbonization process.

Abstract

A novel type of three-dimensional ultralight aerogel sphere, consisting of one-dimensional nanocellulose-derived carbon fibers and two-dimensional graphene layers, was prepared based on a developed drop-freeze-drying followed by carbonization approach. The nanofibrous carbon efficiently prevents the agglomeration of the graphene layers, which, in turn, reduces the shrinkage and maintains the structural stability of the hybrid carbon aerogel spheres. Consequently, the aerogel spheres showing an ultralow-density of 2.8 mg/cm3 and a porosity of 99.98% accomplish the tunable dielectric property and electromagnetic wave (EMW) absorption performance. The high-efficiency utilization of biomass-derived fibrous nanocarbon, graphene, and the porous structure of the hybrid aerogel spheres leads to the excellent EMW absorption performance. The aerogel spheres display an effective absorption bandwidth of 6.16 GHz and a minimum reflection loss of −70.44 dB even at a filler loading of merely 3 wt.%, significantly outperforming that of other biomass-derived carbon-based EMW absorbing materials. This work offers a feasible, facile, and scalable approach for fabricating high-performance and sustainable biomass-based aerogels, suggesting a tremendous application potential in EMW absorption and aerospace.

Electronic Supplementary Material

Download File(s)
12274_2023_5521_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Wu, N.; Yang, Y. F.; Wang, C. X.; Wu, Q. L.; Pan, F.; Zhang, R. N.; Liu, J. R.; Zeng, Z. H. Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv. Mater 2023, 35, 2207969.

[2]

Xu, T.; Du, H. S.; Liu, H. Y.; Liu, W.; Zhang, X. Y.; Si, C. L.; Liu, P. W.; Zhang, K. Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater. 2021, 33, 2101368.

[3]

Li, J. Y.; Zhang, H. W.; Luo, L. Q.; Li, H.; He, J. Y.; Zu, H. L.; Liu, L.; Liu, H.; Wang, F. Y.; Song, J. J. Blocking polysulfides with a Janus Fe3C/N-CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 2205–2213.

[4]

Jin, X. J.; Li, L. L.; Zhao, S. F.; Li, X. H.; Jiang, K.; Wang, L. L.; Shen, G. Z. Assessment of occlusal force and local gas release using degradable bacterial cellulose/Ti3C2Tx MXene bioaerogel for oral healthcare. ACS Nano 2021, 15, 18385–18393.

[5]

Tan, F. C.; Zha, L.; Zhou, Q. Assembly of AIEgen-based fluorescent metal–organic framework nanosheets and seaweed cellulose nanofibrils for humidity sensing and UV-shielding. Adv. Mater. 2022, 34, 2201470.

[6]

Zhu, G. Y.; Ma, L. B.; Lv, H. L.; Hu, Y.; Chen, T.; Chen, R. P.; Liang, J.; Wang, X.; Wang, Y. R.; Yan, C. Z. et al. Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors. Nanoscale 2017, 9, 1237–1243.

[7]

Zhu, S.; Zhou, Q. Y.; Wang, M. Y.; Dale, J.; Qiang, Z.; Fan, Y. C.; Zhu, M. F.; Ye, C. H. Modulating electromagnetic interference shielding performance of ultra-lightweight composite foams through shape memory function. Compos. Part B: Eng. 2021, 204, 108497.

[8]

Zhao, H. Q.; Cheng, Y.; Liu, W.; Yang, L. J.; Zhang, B. S.; Wang, L. P.; Ji, G. B.; Xu, Z. J. Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 2019, 11, 24.

[9]

Guan, H. T.; Wang, Q. Y.; Wu, X. F.; Pang, J.; Jiang, Z. Y.; Chen, G.; Dong, C. J.; Wang, L. H.; Gong, C. H. Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials. Compos. Part B: Eng. 2021, 207, 108562.

[10]

Wang, Y.; Gao, X.; Zhou, H. W.; Wu, X. M.; Zhang, W. Z.; Wang, Q. G.; Luo, C. Y. Fabrication of biomass-derived carbon decorated with NiFe2O4 particles for broadband and strong microwave absorption. Powder Technol. 2019, 345, 370–378.

[11]

Dong, S.; Hu, P. T.; Li, X. T.; Hong, C. Q.; Zhang, X. H.; Han, J. C. NiCo2S4 nanosheets on 3D wood-derived carbon for microwave absorption. Chem. Eng. J. 2020, 398, 125588.

[12]

Wu, F.; Liu, Z. H.; Xiu, T.; Zhu, B. L.; Khan, I.; Liu, P.; Zhang, Q. Y.; Zhang, B. L. Fabrication of ultralight helical porous carbon fibers with CNTs-confined Ni nanoparticles for enhanced microwave absorption. Compos. Part B: Eng. 2021, 215, 108814.

[13]

Wu, F.; Yang, K.; Li, Q.; Shah, T.; Ahmad, M.; Zhang, Q. Y.; Zhang, B. L. Biomass-derived 3D magnetic porous carbon fibers with a helical/chiral structure toward superior microwave absorption. Carbon 2021, 173, 918–931.

[14]

Li, Z. J.; Lin, H.; Ding, S. Q.; Ling, H. L.; Wang, T.; Miao, Z. Q.; Zhang, M.; Meng, A. L.; Li, Q. D. Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon 2020, 167, 148–159.

[15]

Qiu, X.; Wang, L. X.; Zhu, H. L.; Guan, Y. K.; Zhang, Q. T. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 2017, 9, 7408–7418.

[16]

Huang, L.; Li, J. J.; Wang, Z. J.; Li, Y. B.; He, X. D.; Yuan, Y. Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon 2019, 143, 507–516.

[17]

Zhou, X. F.; Jia, Z. R.; Feng, A. L.; Kou, J. H.; Cao, H. J.; Liu, X. H.; Wu, G. L. Construction of multiple electromagnetic loss mechanism for enhanced electromagnetic absorption performance of fish scale-derived biomass absorber. Compos. Part B: Eng. 2020, 192, 107980.

[18]

Wu, Z. C.; Tian, K.; Huang, T.; Hu, W.; Xie, F. F.; Wang, J. J.; Su, M. X.; Li, L. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 2018, 10, 11108–11115.

[19]

Wang, H. G.; Meng, F. B.; Li, J. Y.; Li, T.; Chen, Z. J.; Luo, H. B.; Zhou, Z. W. Carbonized design of hierarchical porous carbon/Fe3O4@Fe derived from loofah sponge to achieve tunable high-performance microwave absorption. ACS Sustainable Chem. Eng. 2018, 6, 11801–11810.

[20]

Liu, Y.; Chen, Z.; Xie, W. H.; Song, S. K.; Zhang, Y.; Dong, L. J. In-situ growth and graphitization synthesis of porous Fe3O4/carbon fiber composites derived from biomass as lightweight microwave absorber. ACS Sustainable Chem. Eng. 2019, 7, 5318–5328.

[21]

Fan, Y. Q.; Li, Y. H.; Yao, Y. L.; Sun, Y.; Tong, B. H.; Zhan, J. Hierarchically porous carbon sheets/Co nanofibers derived from corncobs for enhanced microwave absorbing properties. Appl. Surf. Sci. 2020, 534, 147510.

[22]

Dong, Y. Y.; Zhu, X. J.; Pan, F.; Xiang, Z.; Zhang, X.; Cai, L.; Lu, W. Fire-retardant and thermal insulating honeycomb-like NiS2/SnS2 nanosheets@3D porous carbon hybrids for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2021, 426, 131272.

[23]

Xue, W.; Yang, G.; Bi, S.; Zhang, J. Y.; Hou, Z. L. Construction of caterpillar-like hierarchically structured Co/MnO/CNTs derived from MnO2/ZIF-8@ZIF-67 for electromagnetic wave absorption. Carbon 2021, 173, 521–527.

[24]

Tang, M.; Zhang, J. Y.; Bi, S.; Hou, Z. L.; Shao, X. H.; Zhan, K. T.; Cao, M. S. Ultrathin topological insulator absorber: Unique dielectric behavior of Bi2Te3 nanosheets based on conducting surface states. ACS Appl. Mater. Interfaces 2019, 11, 33285–33291.

[25]

Martin-Martinez, F. J.; Jin, K.; López Barreiro, D.; Buehler, M. J. The rise of hierarchical nanostructured materials from renewable sources: Learning from nature. ACS Nano 2018, 12, 7425–7433.

[26]

Zhang, R. N.; Qiao, J.; Zhang, X.; Yang, Y. F.; Zheng, S. N.; Li, B.; Liu, W.; Liu, J. R.; Zeng, Z. H. Biomass-derived porous carbon for microwave absorption. Mater. Chem. Phys. 2022, 289, 126437.

[27]

De France, K.; Zeng, Z. H.; Wu, T. T.; Nyström, G. Functional materials from nanocellulose: Utilizing structure–property relationships in bottom–up fabrication. Adv. Mater. 2021, 33, 2000657.

[28]

Zeng, Z. H.; Wang, C. X.; Siqueira, G.; Han, D. X.; Huch, A.; Abdolhosseinzadeh, S.; Heier, J.; Nüesch, F.; Zhang, C. F.; Nyström, G. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 2020, 7, 2000979.

[29]

Zeng, Z. H.; Wu, T. T.; Han, D. X.; Ren, Q.; Siqueira, G.; Nyström, G. Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 2020, 14, 2927–2938.

[30]

Yuksel, R.; Yarar Kaplan, B.; Bicer, E.; Yurum, A.; Alkan Gursel, S.; Unalan, H. E. All-carbon hybrids for high performance supercapacitors. Int. J. Energy Res. 2018, 42, 3575–3587.

[31]

Li, M. M.; Zhang, M. L.; Zhao, Y. J.; Jiang, S.; Xu, Q. Y.; Han, F. Y.; Zhu, J. H.; Liu, L. F.; Ge, A. X. Multilayer structured CNF/rGO aerogels and rGO film composites for efficient electromagnetic interference shielding. Carbohydr. Polym. 2022, 286, 119306.

[32]

Zhang, B.; Luo, C.; Zhou, G. M.; Pan, Z. Z.; Ma, J. B.; Nishihara, H.; He, Y. B.; Kang, F. Y.; Lv, W.; Yang, Q. H. Lamellar MXene composite aerogels with sandwiched carbon nanotubes enable stable lithium-sulfur batteries with a high sulfur loading. Adv. Funct. Mater. 2021, 31, 2100793.

[33]

Zeng, Z. H.; Wang, G.; Wolan, B. F.; Wu, N.; Wang, C. X.; Zhao, S. Y.; Yue, S. Y.; Li, B.; He, W. D.; Liu, J. R. et al. Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano-Micro Lett. 2022, 14, 179.

[34]

Zeng, Z. H.; Wang, C. X.; Zhang, Y. F.; Wang, P. Y.; Seyed Shahabadi, S. I.; Pei, Y. M.; Chen, M. J.; Lu, X. H. Ultralight and highly elastic graphene/lignin-derived carbon nanocomposite aerogels with ultrahigh electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 2018, 10, 8205–8213.

[35]

Zhang, K. L.; Zhang, J. Y.; Hou, Z. L.; Bi, S.; Zhao, Q. L. Multifunctional broadband microwave absorption of flexible graphene composites. Carbon 2019, 141, 608–617.

[36]

Xu, H. L.; Yin, X. W.; Li, M. H.; Li, X. L.; Li, X.; Dang, X. L.; Zhang, L. T.; Cheng, L. F. Ultralight cellular foam from cellulose nanofiber/carbon nanotube self-assemblies for ultrabroad-band microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 22628–22636.

[37]
Li, B.; Wu, N.; Yang, Y. F.; Pan, F.; Wang, C. X.; Wang, G.; Xiao, L.; Liu, W.; Liu, J. R.; Zeng, Z. H. Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202213357.
[38]

Liu, H. Y.; Xu, T.; Cai, C. Y.; Liu, K.; Liu, W.; Zhang, M.; Du, H. S.; Si, C. L.; Zhang, K. Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 2022, 32, 2113082.

[39]

Zhou, Y.; Wang, S. J.; Li, D. S.; Jiang, L. Lightweight and recoverable ANF/rGO/PI composite aerogels for broad and high-performance microwave absorption. Compos. Part B: Eng. 2021, 213, 108701.

[40]

Liu, Q.; Sun, W.; Yuan, T.; Liang, S. B.; Peng, F.; Yao, C. L. Green and cost-effective synthesis of flexible, highly conductive cellulose nanofiber/reduced graphene oxide composite film with deep eutectic solvent. Carbohydr. Polym. 2021, 272, 118514.

[41]

Shi, Q. Q.; Liu, D. P.; Wang, Y.; Zhao, Y. W.; Yang, X. W.; Huang, J. High-performance sodium-ion battery anode via rapid microwave carbonization of natural cellulose nanofibers with graphene initiator. Small 2019, 15, 1901724.

[42]

Jasso-Ramos, L. E.; Ojeda-Hernández, A.; Guerrero-Bermea, C.; García-Gómez, N. A.; Manríquez, J.; Sepúlveda-Guzmán, S.; Cruz-Silva, R. Simultaneous intercalated assembly of mesostructured hybrid carbon nanofiber/reduced graphene oxide and its use in electrochemical sensing. Nanotechnology 2019, 30, 025601.

[43]

Shi, Y. N.; Ding, X. Y.; Pan, K. C.; Gao, Z. H.; Du, J.; Qiu, J. A novel multi-dimensional structure of graphene-decorated composite foam for excellent stealth performance in microwave and infrared frequency bands. J. Mater. Chem. A 2022, 10, 7705–7717.

[44]

Liu, H. Y.; Xu, T.; Liang, Q. D.; Zhao, Q. S.; Zhao, D. W.; Si, C. L. Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Adv. Compos. Hybrid. Mater. 2022, 5, 1168–1179.

[45]

Moyseowicz, A.; Gryglewicz, S.; Gryglewicz, G. Enhancing electrochemical capacitor performance through the application of nanostructured carbon materials as conducting additives. Chem. Eng. Process. Process Intensif. 2021, 169, 108647.

[46]

Cao, F. H.; Xu, J.; Liu, M. J.; Yan, F.; Ouyang, Q. Y.; Zhang, X. T.; Zhang, X. L.; Chen, Y. J. Regulation of impedance matching feature and electronic structure of nitrogen-doped carbon nanotubes for high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 108, 1–9.

[47]

Liu, W. W.; Li, H.; Zeng, Q. P.; Duan, H. N.; Guo, Y. P.; Liu, X. F.; Sun, C. Y.; Liu, H. Z. Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties. J. Mater. Chem. A 2015, 3, 3739–3747.

[48]

Bai, T. T.; Guo, Y.; Wang, D. D.; Liu, H.; Song, G.; Wang, Y. M.; Guo, Z. H.; Liu, C T.; Shen, C. Y. A resilient and lightweight bacterial cellulose-derived C/rGO aerogel-based electromagnetic wave absorber integrated with multiple functions. J. Mater. Chem. A 2021, 9, 5566–5577.

[49]

Su, X. G.; Han, M. J.; Liu, Y. N.; Wang, J.; Liang, C. B.; Liu, Y. Q. In-situ construction of nitrogen-doped reduced graphene oxide@carbon nanofibers towards the synergetic enhancement of their microwave absorption properties via integrating point defects and structure engineering. J. Colloid Interface Sci. 2022, 628, 984–994.

[50]

Hou, Z. L.; Du, K. R.; Zhang, Y. Q.; Bi, S.; Zhang, J. Y. Nanoarchitectonics of MnO2 nanotubes as sea urchin-like aggregates for dielectric response and microwave absorption with a wide concentration domain. Nano Res. 2022, 16, 2604–2610.

[51]

Xu, D. W.; Ren, Y. M.; Guo, X. Q.; Feng, D. S.; Yang, R.; Zhao, B.; Zhang, R. Multiscale core–shell CoO@Co?PGN/CNTs composites aerogels for ultra-wide microwave absorption. Compos. Sci. Technol. 2022, 225, 109524.

[52]

Chen, F.; Zhang, S. S.; Ma, B. B.; Xiong, Y.; Luo, H.; Cheng, Y. Z.; Li, X. C.; Wang, X.; Gong, R. Z. Bimetallic CoFe-MOF@Ti3C2Tx MXene derived composites for broadband microwave absorption. Chem. Eng. J. 2022, 431, 134007.

[53]

Li, Y.; Meng, F. B.; Mei, Y.; Wang, H. G.; Guo, Y. F.; Wang, Y.; Peng, F. X.; Huang, F.; Zhou, Z. W. Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption. Chem. Eng. J. 2020, 391, 123512.

[54]

Liang, L. Y.; Han, G. J.; Li, Y.; Zhao, B.; Zhou, B.; Feng, Y. Z.; Ma, J. M.; Wang, Y. M.; Zhang, R.; Liu, C. T. Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 2019, 11, 25399–25409.

[55]

Cheng, J. B.; Wang, Y. Q.; Zhang, A. N.; Zhao, H. B.; Wang, Y. Z. Growing MoO3-doped WO3 nanoflakes on rGO aerogel sheets towards superior microwave absorption. Carbon 2021, 183, 205–215.

[56]

Li, Q.; Zhao, X.; Zhang, Z.; Xun, X. C.; Zhao, B.; Xu, L. X.; Kang, Z.; Liao, Q. L.; Zhang, Y. Architecture design and interface engineering of self-assembly VS4/rGO heterostructures for ultrathin absorbent. Nano-Micro Lett. 2022, 14, 67.

[57]

Zhang, H.; Luo, N.; Liu, T. L.; Chen, F.; Fu, Q. Light-weight, low-loading, and large-sheet reduced graphene oxide for high-efficiency microwave absorber. Carbon 2022, 196, 1024–1034.

[58]

Li, Y.; Liu, X. F.; Nie, X. Y.; Yang, W. W.; Wang, Y. D.; Yu, R. H.; Shui, J. L. Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 2019, 29, 1807624.

[59]

Tian, H. Y.; Qiao, J.; Yang, Y. F.; Xu, D. M.; Meng, X. W.; Liu, W.; Zhang, X.; Li, B. D.; Wu, L. L.; Zeng, Z. H. et al. ZIF-67-derived Co/C embedded boron carbonitride nanotubes for efficient electromagnetic wave absorption. Chem. Eng. J. 2022, 450, 138011.

[60]

Li, T.; Zhi, D. D.; Chen, Y.; Li, B.; Zhou, Z. W.; Meng, F. B. Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption. Nano Res. 2020, 13, 477–484.

[61]

Di, X. C.; Wang, Y.; Fu, Y. Q.; Wu, X. M.; Wang, P. Wheat flour-derived nanoporous carbon@ZnFe2O4 hierarchical composite as an outstanding microwave absorber. Carbon 2021, 173, 174–184.

[62]

Li, F. Y.; Xia, H.; Ni, Q. Q. Egg-white-derived magnetic carbon flakes with enhanced microwave absorption properties. Synth. Met. 2021, 278, 116827.

[63]

Wei, Y.; Liu, H. J.; Liu, S. C.; Zhang, M. M.; Shi, Y. P.; Zhang, J. W.; Zhang, L.; Gong, C. H. Waste cotton-derived magnetic porous carbon for high-efficiency microwave absorption. Compos. Commun. 2018, 9, 70–75.

[64]

Cheng, Y.; Seow, J. Z. Y.; Zhao, H. Q.; Xu, Z. J.; Ji, G. B. A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 2020, 12, 125.

[65]

Zhao, H. Q.; Cheng, Y.; Lv, H. L.; Ji, G. B.; Du, Y. W. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 2019, 142, 245–253.

[66]

Negi, P.; Chhantyal, A. K.; Dixit, A. K.; Kumar, S.; Kumar, A. Activated carbon derived from mango leaves as an enhanced microwave absorbing material. Sustainable Mater. Technol. 2021, 27, e00244.

[67]

Zhao, H. Q.; Cheng, Y.; Lv, H. L.; Zhang, B. S.; Ji, G. B.; Du, Y. W. Achieving sustainable ultralight electromagnetic absorber from flour by turning surface morphology of nanoporous carbon. ACS Sustainable Chem. Eng. 2018, 6, 15850–15857.

[68]

Liu, X. M.; Chai, N.; Yu, Z. J.; Xu, H. L.; Li, X. L.; Liu, J. Q.; Yin, X. W.; Riedel, R. Ultra-light, high flexible, and efficient CNTs/Ti3C2-sodium alginate foam for electromagnetic absorption application. J. Mater. Sci. Technol. 2019, 35, 2859–2867.

[69]

Wang, L. N.; Liu, M. C.; Wang, G.; Dai, B.; Yu, F.; Zhang, J. L. An ultralight nitrogen-doped carbon aerogel anchored by Ni-NiO nanoparticles for enhanced microwave adsorption performance. J. Alloys Compd. 2019, 776, 43–51.

[70]

Zhang, Z.; Tan, J. W.; Gu, W. H.; Zhao, H. Q.; Zheng, J.; Zhang, B. S.; Ji, G. B. Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chem. Eng. J. 2020, 395, 125190.

[71]

Zhao, H. B.; Cheng, J. B.; Wang, Y. Z. Biomass-derived Co@crystalline carbon@carbon aerogel composite with enhanced thermal stability and strong microwave absorption performance. J. Alloys Compd. 2018, 736, 71–79.

[72]

Li, Y. Y.; Gai, L. X.; Song, G. L.; An, Q. D.; Xiao, Z. Y.; Zhai, S. R. Enhanced properties of CoS2/Cu2S embedded N/S co-doped mesh-like carbonaceous composites for electromagnetic wave absorption. Carbon 2022, 186, 238–252.

[73]

Liu, X. M.; Li, M. H.; Liu, H. Q.; Duan, W. Y.; Fasel, C.; Chen, Y. C.; Qu, F. M.; Xie, W. J.; Fan, X. M.; Riedel, R. et al. Nanocellulose-polysilazane single-source-precursor derived defect-rich carbon nanofibers/SiCN nanocomposites with excellent electromagnetic absorption performance. Carbon 2022, 188, 349–359.

[74]

Jiang, Y.; Xie, X.; Chen, Y.; Liu, Y. J.; Yang, R.; Sui, G. X. Hierarchically structured cellulose aerogels with interconnected MXene networks and their enhanced microwave absorption properties. J. Mater. Chem. C 2018, 6, 8679–8687.

[75]

Guo, Y.; Wang, D. D.; Tian, Y.; Wang, J. W.; Bai, T. T.; Liu, H.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. FeCo alloy nanoparticle decorated cellulose based carbon aerogel as a low-cost and efficient electromagnetic microwave absorber. J. Mater. Chem. C 2022, 10, 126–134.

[76]

Tian, Y.; Estevez, D.; Wei, H. J.; Peng, M. Y.; Zhou, L. P.; Xu, P.; Wu, C.; Yan, M.; Wang, H.; Peng, H. X. et al. Chitosan-derived carbon aerogels with multiscale features for efficient microwave absorption. Chem. Eng. J. 2021, 421, 129781.

[77]

Bai, T. T.; Guo, Y.; Liu, H.; Song, G.; Zhang, D. B.; Wang, Y. M.; Mi, L. W.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Achieving enhanced electromagnetic shielding and absorption capacity of cellulose-derived carbon aerogels via tuning the carbonization temperature. J. Mater. Chem. C 2020, 8, 5191–5201.

Nano Research
Pages 7931-7940
Cite this article:
Zhang R, Li B, Yang Y, et al. Ultralight aerogel sphere composed of nanocellulose-derived carbon nanofiber and graphene for excellent electromagnetic wave absorption. Nano Research, 2023, 16(5): 7931-7940. https://doi.org/10.1007/s12274-023-5521-5
Topics:
Part of a topical collection:

1001

Views

38

Crossref

36

Web of Science

40

Scopus

1

CSCD

Altmetrics

Received: 08 December 2022
Revised: 05 January 2023
Accepted: 19 January 2023
Published: 10 March 2023
© Tsinghua University Press 2023
Return