AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Polarization-insensitive plasmon nanofocusing with broadband interference modulation for optical nanoimaging

Shaobo Li1Fei Wang1Ze Zhang1Shuhao Zhao1Chengsheng Xia1Peirui Ji1Xiaomin Wang1Guofeng Zhang1Tao Liu1Feng Chen2Shuming Yang1( )
State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Show Author Information

Graphical Abstract

This polarization-insensitive nanofocusing is realized via azimuthal asymmetries of a spiral slit, which can reverse the polarization of the surface plasmon polaritons (SPPs) mode and then excite the TM0 SPP mode over a broad range of visible wavelengths. The conical taper further compresses the TM0 SPP mode and generates a plasmonic spot at the tip apex to allow high spatial resolution optical imaging.

Abstract

Delivering light to the nanoscale using a flexible and easily integrated fiber platform holds potential in various fields of quantum science and bioscience. However, rigorous optical alignment, sophisticated fabrication process, and low spatial resolution of the fiber-based nanoconcentrators limit the practical applications. Here, a broadband azimuthal plasmon interference nanofocusing technique on a fiber-coupled spiral tip is demonstrated for fiber-based near-field optical nanoimaging. The spiral plasmonic fiber tip fabricated through a robust and reproducible process can reverse the polarization and modulate the mode field of the surface plasmon polaritons in three-dimensionally azimuthal direction, resulting in polarization-insensitive, broad-bandwidth, and azimuthal interference nanofocusing. By integrating this with a basic scanning near-field optical microscopy, a high optical resolution of 31 nm and beyond is realized. The high performance and the easy incorporation with various existing measurement platforms offered by this fiber-based nanofocusing technique have great potential in near-field optics, tip-enhanced Raman spectroscopy, nonlinear spectroscopy, and quantum sensing.

Electronic Supplementary Material

Download File(s)
12274_2023_5525_MOESM1_ESM.pdf (535.6 KB)

References

[1]

Tuniz, A.; Schmidt, M. A. Interfacing optical fibers with plasmonic nanoconcentrators. Nanophotonics 2018, 7, 1279–1298.

[2]

Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830.

[3]

Gramotnev, D. K.; Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photonics 2010, 4, 83–91.

[4]

Kawata, S.; Inouye, Y.; Verma, P. Plasmonics for near-field nano-imaging and superlensing. Nat. Photonics 2009, 3, 388–394.

[5]

Lee, S. Y.; Kim, K.; Kim, S. J.; Park, H.; Kim, K. Y.; Lee, B. Plasmonic meta-slit: Shaping and controlling near-field focus. Optica 2015, 2, 6–13.

[6]

Tai, Y. H.; Wei, P. K. Sensitive liquid refractive index sensors using tapered optical fiber tips. Opt. Lett. 2010, 35, 944–946.

[7]

Qiao, Z.; Xue, M. F.; Zhao, Y. Q.; Huang, Y. D.; Zhang, M.; Chang, C.; Chen, J. N. Infrared nanoimaging of nanoscale sliding dislocation of collagen fibrils. Nano Res. 2022, 15, 2355–2361.

[8]

Umakoshi, T.; Tanaka, M.; Saito, Y.; Verma, P. White nanolight source for optical nanoimaging. Sci. Adv. 2020, 6, 4179.

[9]

Wang, F.; Yang, S. M.; Li, S. B.; Zhao, S. H.; Cheng, B. Y.; Xia, C. S. High resolution and high signal-to-noise ratio imaging with near-field high-order optical signals. Nano Res. 2022, 15, 8345–8350.

[10]

Chen, C.; Hayazawa, N.; Kawata, S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 2014, 5, 3312.

[11]

Jiang, S.; Zhang, Y.; Zhang, R.; Hu, C. R.; Liao, M. H.; Luo, Y.; Yang, J. L.; Dong, Z. C.; Hou, J. G. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. Nat. Nanotechnol. 2015, 10, 865–869.

[12]

Wang, H. L.; You, E. M.; Panneerselvam, R.; Ding, S. Y.; Tian, Z. Q. Advances of surface-enhanced Raman and IR spectroscopies: From nano/microstructures to macro-optical design. Light: Sci. Appl. 2021, 10, 161.

[13]

Kravtsov, V.; Ulbricht, R.; Atkin, J. M.; Raschke, M. B. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat. Nanotechnol. 2016, 11, 459–464.

[14]

Tuniz, A.; Bickerton, O.; Diaz, F. J.; Käsebier, T.; Kley, E. B.; Kroker, S.; Palomba, S.; De Sterke, C. M. Modular nonlinear hybrid plasmonic circuit. Nat. Commun. 2020, 11, 2413.

[15]

Bertoncini, A.; Liberale, C. 3D printed waveguides based on photonic crystal fiber designs for complex fiber-end photonic devices. Optica 2020, 7, 1487–1494.

[16]

Liu, X. J.; Wu, Y. K.; Qi, X. Z.; Lu, L.; Li, M.; Zou, C. L.; Ren, S. Y.; Guo, G. P.; Guo, G. C.; Zhu, W. G. et al. Near-field modulation of differently oriented single photon emitters with a plasmonic probe. Nano Lett. 2022, 22, 2244–2250.

[17]

Xu, D.; Xiong, X.; Wu, L.; Ren, X. F.; Png, C. E.; Guo, G. C.; Gong, Q. H.; Xiao, Y. F. Quantum plasmonics: New opportunity in fundamental and applied photonics. Adv. Opt. Photon. 2018, 10, 703–756.

[18]

Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 2004, 93, 137404.

[19]

Janunts, N. A.; Baghdasaryan, K. S.; Nerkararyan, K. V.; Hecht, B. Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip. Opt. Commun. 2005, 253, 118–124.

[20]

Kumar, S.; Park, H.; Cho, H.; Siddique, R. H.; Narasimhan, V.; Yang, D.; Choo, H. Overcoming evanescent field decay using 3D-tapered nanocavities for on-chip targeted molecular analysis. Nat. Commun. 2020, 11, 2930.

[21]

Hou, Y. P.; Ma, C. F.; Wang, W. T.; Chen, Y. H. A dual-use probe for nano-metric photoelectric characterization using a confined light field generated by photonic crystals in the cantilever. Nano Res. 2021, 14, 3848–3853.

[22]

Tuniz, A.; Chemnitz, M.; Dellith, J.; Weidlich, S.; Schmidt, M. A. Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber. Nano Lett. 2017, 17, 631–637.

[23]

Li, S. B.; Yang, S. M. Nanofocusing of a novel plasmonic fiber tip coupling with nanograting resonance. J. Phys. D Appl. Phys. 2020, 53, 215102.

[24]

Tugchin, B. N.; Janunts, N.; Klein, A. E.; Steinert, M.; Fasold, S.; Diziain, S.; Sison, M.; Kley, E. B.; Tünnermann, A.; Pertsch, T. Plasmonic tip based on excitation of radially polarized conical surface Plasmon polariton for detecting longitudinal and transversal fields. ACS Photonics 2015, 2, 1468–1475.

[25]

Liu, M.; Lu, F. F.; Zhang, W. D.; Huang, L. G.; Liang, S. H.; Mao, D.; Gao, F.; Mei, T.; Zhao, J. L. Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach. Nanophotonics 2019, 8, 921–929.

[26]

Bao, W.; Melli, M.; Caselli, N.; Riboli, F.; Wiersma, D. S.; Staffaroni, M.; Choo, H.; Ogletree, D. F.; Aloni, S.; Bokor, J. et al. Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science 2012, 338, 1317–1321.

[27]

Choo, H.; Kim, M. K.; Staffaroni, M.; Seok, T. J.; Bokor, J.; Cabrini, S.; Schuck, P. J.; Wu, M. C.; Yablonovitch, E. Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper. Nat. Photonics 2012, 6, 838–844.

[28]

Kim, S.; Yu, N.; Ma, X. Z.; Zhu, Y. Z.; Liu, Q. S.; Liu, M.; Yan, R. X. High external-efficiency nanofocusing for lens-free near-field optical nanoscopy. Nat. Photonics 2019, 13, 636–643.

[29]

Wu, Y. K.; Lu, L.; Chen, Y.; Feng, L. T.; Qi, X. Z.; Ren, H. L.; Guo, G. C.; Ren, X. F. Excitation and analyzation of different surface Plasmon modes on a suspended Ag nanowire. Nanoscale 2019, 11, 22475–22481.

[30]

Kihm, H. W.; Kim, J.; Koo, S.; Ahn, J.; Ahn, K.; Lee, K.; Park, N.; Kim, D. S. Optical magnetic field mapping using a subwavelength aperture. Opt. Express 2013, 21, 5625–5633.

[31]

Hecht, B.; Sick, B.; Wild, U. P.; Deckert, V.; Zenobi, R.; Martin, O. J. F.; Pohl, D. W. Scanning near-field optical microscopy with aperture probes: Fundamentals and applications. J. Chem. Phys. 2000, 112, 7761–7774.

[32]

Lindquist, N. C.; Nagpal, P.; Lesuffleur, A.; Norris, D. J.; Oh, S. H. Three-dimensional plasmonic nanofocusing. Nano Lett. 2010, 10, 1369–1373.

[33]

Cherukulappurath, S.; Johnson, T. W.; Lindquist, N. C.; Oh, S. H. Template-stripped asymmetric metallic pyramids for tunable plasmonic nanofocusing. Nano Lett. 2013, 13, 5635–5641.

[34]

Lotito, V.; Sennhauser, U.; Hafner, C.; Bona, G. L. Fully metal-coated scanning near-field optical microscopy probes with spiral corrugations for superfocusing under arbitrarily oriented linearly polarised excitation. Plasmonics 2011, 6, 327–336.

[35]

Li, J. F.; Mu, J. J.; Wang, B. L.; Ding, W.; Liu, J.; Guo, H. L.; Li, W. X.; Gu, C. Z.; Li, Z. Y. Direct laser writing of symmetry-broken spiral tapers for polarization-insensitive three-dimensional plasmonic focusing. Laser Photon. Rev. 2014, 8, 602–609.

[36]

Li, S. B.; Yang, S. M.; Wang, F.; Liu, Q.; Cheng, B. Y.; Rosenwaks, Y. Plasmonic interference modulation for broadband nanofocusing. Nanophotonics 2021, 10, 4113–4123.

[37]

Becker, S. F.; Esmann, M.; Yoo, K.; Gross, P.; Vogelgesang, R.; Park, N.; Lienau, C. Gap-plasmon-enhanced nanofocusing near-field microscopy. ACS Photonics 2016, 3, 223–232.

[38]

Sadiq, D.; Shirdel, J.; Lee, J. S.; Selishcheva, E.; Park, N.; Lienau, C. Adiabatic nanofocusing scattering-type optical nanoscopy of individual gold nanoparticles. Nano Lett. 2011, 11, 1609–1613.

[39]

Ropers, C.; Neacsu, C. C.; Elsaesser, T.; Albrecht, M.; Raschke, M. B.; Lienau, C. Grating-coupling of surface plasmons onto metallic tips: A nanoconfined light source. Nano Lett. 2007, 7, 2784–2788.

[40]

Neacsu, C. C.; Berweger, S.; Olmon, R. L.; Saraf, L. V.; Ropers, C.; Raschke, M. B. Near-field localization in plasmonic superfocusing: A nanoemitter on a tip. Nano Lett. 2010, 10, 592–596.

Nano Research
Pages 9990-9996
Cite this article:
Li S, Wang F, Zhang Z, et al. Polarization-insensitive plasmon nanofocusing with broadband interference modulation for optical nanoimaging. Nano Research, 2023, 16(7): 9990-9996. https://doi.org/10.1007/s12274-023-5525-1
Topics:

726

Views

1

Crossref

3

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 23 November 2022
Revised: 06 January 2023
Accepted: 22 January 2023
Published: 14 March 2023
© Tsinghua University Press 2023
Return