AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electroactive and antibacterial wound dressings based on Ti3C2Tx MXene/poly(ε-caprolactone)/gelatin coaxial electrospun nanofibrous membranes

Shixin XuChen DuMiaomiao ZhangRuoying WangWei FengChengwei WangQinsong LiuWen Zhao( )
Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
Show Author Information

Graphical Abstract

Electroactive and antibacterial Ti3C2Tx MXene/poly(ε-caprolactone) (PCL)/gelatin nanofiber membranes were able to significantly promote skin wound healing due to its extracellular matrix (ECM) bionic structure and reconstruction of endogenous electrical conduction.

Abstract

Endogenous electric fields (EFs) are capable of regulating the behaviors of skin cells in wound healing. However, majority of current dressings are primarily engaged in the passive repair of defective tissue, as they lack the ability to actively respond to physiological electrical signals. In this work, a series of nanofibrous membranes (NFMs) were fabricated by coaxial electrospinning, combining the good mechanical properties of poly(ε-caprolactone) (PCL), the bioactivity of gelatin and the electroactivity of Ti3C2Tx MXene, as electroactive and antibacterial dressings for cutaneous wound healing. The obtained NFMs exhibited suitable mechanical properties and hydrophilicity, excellent electroactivity, antibacterial activity, and biocompatibility. Especially, Ti3C2Tx MXene/PCL/gelatin-6 (MPG-6, 6 wt.% of Ti3C2Tx MXene in sheath spinning liquids) showed the optimal conductivity and antibacterial activity. Excitingly, this scaffold significantly promoted the adhesion, proliferation, and migration of NIH 3T3 cells under the electrical stimulation (ES). The in vivo evaluation in a full-thickness wounds defect model demonstrated that the MPG-6 films significantly accelerated wound closure, increased granulation tissue formation, increased collagen deposition, and promoted wound vascularization. In summary, the versatile scaffold is expected to be an ideal candidate as wound dressings due to its ability to promote the transmission of physiological electrical signals and thus improved the therapeutic outcomes of wound regeneration.

References

[1]

Otto, K. J.; Schmidt, C. E. Neuron-targeted electrical modulation. Science 2020, 367, 1303–1304.

[2]

Trivedi, D. P.; Hallock, K. J.; Bergethon, P. R. Electric fields caused by blood flow modulate vascular endothelial electrophysiology and nitric oxide production. Bioelectromagnetics 2013, 34, 22–30.

[3]

Ma, Y. X.; Yang, C.; Liang, Q.; He, Z. H.; Weng, W. J.; Lei, J.; Skudder-Hill, L.; Jiang, J. Y.; Feng, J. F. Direct current electric field coordinates the migration of BV2 microglia via ERK/GSK3β/Cofilin signaling pathway. Mol. Neurobiol. 2022, 59, 3665–3677.

[4]
Tai, G. P.; Reid, B.; Cao, L.; Zhao, M. Electrotaxis and wound healing: Experimental methods to study electric fields as a directional signal for cell migration. In Chemotaxis: Methods and Protocols. Jin, T.; Hereld, D. , Eds.; Humana Press: Totowa, 2009; pp 77–97.
[5]

Cao, L.; Pu, J.; Zhao, M. GSK-3β is essential for physiological electric field-directed Golgi polarization and optimal electrotaxis. Cell. Mol. Life Sci. 2011, 68, 3081–3093.

[6]

Rim, N. G.; Shin, C. S.; Shin, H. Current approaches to electrospun nanofibers for tissue engineering. Biomed. Mater. 2013, 8, 014102.

[7]

Mo, X. M.; Xu, C. Y.; Kotaki, M.; Ramakrishna, S. Electrospun P(LLA-CL) nanofiber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 2004, 25, 1883–1890.

[8]

Zhang, X. D.; Li, L. F.; Ouyang, J.; Zhang, L. Q.; Xue, J. J.; Zhang, H.; Tao, W. Electroactive electrospun nanofibers for tissue engineering. Nano Today 2021, 39, 101196.

[9]

Shrestha, S.; Shrestha, B. K.; Kim, J. I.; Won Ko, S.; Park, C. H.; Kim, C. S. Electrodeless coating polypyrrole on chitosan grafted polyurethane with functionalized multiwall carbon nanotubes electrospun scaffold for nerve tissue engineering. Carbon 2018, 136, 430–443.

[10]

Zhao, X.; Wu, H.; Guo, B. L.; Dong, R. N.; Qiu, Y. S.; Ma, P. X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017, 122, 34–47.

[11]

Fan, Z. J.; Liu, B.; Wang, J. Q.; Zhang, S. Y.; Lin, Q. Q.; Gong, P. W.; Ma, L. M.; Yang, S. R. A novel wound dressing based on Ag/graphene polymer hydrogel: Effectively kill bacteria and accelerate wound healing. Adv. Funct. Mater. 2014, 24, 3933–3943.

[12]

Barjasteh, M.; Dehnavi, S. M.; Ahmadi Seyedkhani, S.; Rahnamaee, S. Y.; Golizadeh, M. Improved biological activities of dual nanofibrous chitosan/bacterial cellulose wound dressing by a novel silver-based metal-organic framework. Surf. Interfaces 2023, 36, 102631.

[13]

Sun, M. C.; Chen, Y. F.; Liu, D.; Xu, X. L.; You, Y. C.; Lu, W.; Shi, Y. J.; Ren, M. Y.; Fan, Y. B.; Du, Y. Z. et al. Effective decolonization strategy for mupirocin-resistant Staphylococcus aureus by TPGS-modified mupirocin-silver complex. Mater. Today Bio 2023, 18, 100534.

[14]

Wang, S. Q.; Zhang, Y. L.; Sun, F. Y.; Xi, K. Y.; Sun, Z. W.; Zheng, X. Y.; Guo, F. Z.; Zhong, H. L.; Yang, M. M.; Shao, Y. T. et al. Catalase-like nanozymes combined with hydrogel to facilitate wound healing by improving the microenvironment of diabetic ulcers. Mater. Des. 2023, 225, 111557.

[15]
Huang, Y. Q.; Du, Z. Y.; Li, K.; Jing, W.; Wei, P. F.; Zhao, B.; Yu, Y. J.; Cai, Q.; Yang, X. P. ROS-scavenging electroactive polyphosphazene-based core–shell nanofibers for bone regeneration. Adv. Fiber Mater. 2022, 4, 894–907.
[16]

Levitt, A.; Seyedin, S.; Zhang, J. Z.; Wang, X. H.; Razal, J. M.; Dion, G.; Gogotsi, Y. Bath electrospinning of continuous and scalable multifunctional MXene-infiltrated nanoyarns. Small 2020, 16, 2002158.

[17]

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

[18]

Zhang, Y. L.; Yan, Y.; Qiu, H.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. A mini-review of MXene porous films: Preparation, mechanism and application. J. Mater. Sci. Technol. 2022, 103, 42–49.

[19]
Zhang, Y.; Ruan, K.; Zhou, K.; Gu, J. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.
[20]

Huang, K.; Li, Z. J.; Lin, J.; Han, G.; Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47, 5109–5124.

[21]

Zhang, J. Z.; Seyedin, S.; Qin, S.; Wang, Z. Y.; Moradi, S.; Yang, F. L.; Lynch, P. A.; Yang, W. R.; Liu, J. Q.; Wang, X. G. et al. Highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors. Small 2019, 15, 1804732.

[22]

Wang, L.; Ma, Z. L.; Qiu, H.; Zhang, Y. L.; Yu, Z.; Gu, J. W. Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 2022, 14, 224.

[23]

Zhang, X. B.; Shao, B. Y.; Guo, A. P.; Gao, Z.; Qin, Y.; Zhang, C.; Cui, F. M.; Yang, X. J. Improved electrochemical performance of CoOx-NiO/Ti3C2Tx MXene nanocomposites by atomic layer deposition towards high capacitance supercapacitors. J. Alloys Compd. 2021, 862, 158546.

[24]

Levitt, A.; Zhang, J. Z.; Dion, G.; Gogotsi, Y.; Razal, J. M. MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Adv. Funct. Mater. 2020, 30, 2000739.

[25]

Al-Baadani, M. A.; Yie, K. H. R.; Al-Bishari, A. M.; Alshobi, B. A.; Zhou, Z. X.; Fang, K.; Dai, B. W.; Shen, Y. D.; Ma, J. F.; Liu, J. S. et al. Co-electrospinning polycaprolactone/gelatin membrane as a tunable drug delivery system for bone tissue regeneration. Mater. Des. 2021, 209, 109962.

[26]

Chinnappan, A.; Lee, J. K. Y.; Jayathilaka, W. A. D. M.; Ramakrishna, S. Fabrication of MWCNT/Cu nanofibers via electrospinning method and analysis of their electrical conductivity by four-probe method. Int. J. Hydrogen Energ. 2018, 43, 721–729.

[27]

Zeng, W. W.; Cheng, N. M.; Liang, X.; Hu, H. F.; Luo, F. L.; Jin, J.; Li, Y. W. Electrospun polycaprolactone nanofibrous membranes loaded with baicalin for antibacterial wound dressing. Sci. Rep. 2022, 12, 10900.

[28]

Lowery, J. L.; Datta, N.; Rutledge, G. C. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(ɛ-caprolactone) fibrous mats. Biomaterials 2010, 31, 491–504.

[29]

Ghobeira, R.; Philips, C.; Liefooghe, L.; Verdonck, M.; Asadian, M.; Cools, P.; Declercq, H.; De Vos, W. H.; De Geyter, N.; Morent, R. Synergetic effect of electrospun PCL fiber size, orientation and plasma-modified surface chemistry on stem cell behavior. Appl. Surf. Sci. 2019, 485, 204–221.

[30]

Zhao, H. J.; Deng, N. P.; Kang, W. M.; Cheng, B. W. Designing of multilevel-nanofibers-based organic–inorganic hybrid gel electrolyte enabling an innovative lithium-ion battery with superior ionic transport capability and advanced security. Chem. Eng. J. 2020, 390, 124571.

[31]

Hollister, S. J. Porous scaffold design for tissue engineering. Nat. Mater. 2005, 4, 518–524.

[32]

Firestein, K. L.; von Treifeldt, J. E.; Kvashnin, D. G.; Fernando, J. F. S.; Zhang, C.; Kvashnin, A. G.; Podryabinkin, E. V.; Shapeev, A. V.; Siriwardena, D. P.; Sorokin, P. B. et al. Young’s modulus and tensile strength of Ti3C2 MXene nanosheets as revealed by in situ TEM probing, AFM nanomechanical mapping, and theoretical calculations. Nano Lett. 2020, 20, 5900–5908.

[33]

Woo, J. H.; Kim, N. H.; Kim, S. I.; Park, O. K.; Lee, J. H. Effects of the addition of boric acid on the physical properties of MXene/polyvinyl alcohol (PVA) nanocomposite. Compos. Part B:Eng. 2020, 199, 108205.

[34]

Liu, L. X.; Guo, R.; Gao, J.; Ding, Q.; Fan, Y. C.; Yu, J. Y. Mechanically and environmentally robust composite nanofibers with embedded MXene for wearable shielding of electromagnetic wave. Compos. Commun. 2022, 30, 101094.

[35]

Shami, Z.; Amininasab, S. M.; Shakeri, P. Structure–property relationships of nanosheeted 3D hierarchical roughness MgAl-layered double hydroxide branched to an electrospun porous nanomembrane: A superior oil-removing nanofabric. ACS Appl. Mater. Interfaces 2016, 8, 28964–28973.

[36]

Bhatta, T.; Maharjan, P.; Cho, H.; Park, C.; Yoon, S. H.; Sharma, S.; Salauddin, M.; Rahman, M. T.; Rana, S. M. S.; Park, J. Y. High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers. Nano Energy 2021, 81, 105670.

[37]

Luo, R. Z.; Dai, J. Y.; Zhang, J. P.; Li, Z. Accelerated skin wound healing by electrical stimulation. Adv. Healthc. Mater. 2021, 10, 2100557.

[38]

Kotnik, T.; Miklavčič, D. Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophysi. J. 2006, 90, 480–491.

[39]

Mao, L.; Hu, S. M.; Gao, Y. H.; Wang, L.; Zhao, W. W.; Fu, L. N.; Cheng, H. Y.; Xia, L.; Xie, S. X.; Ye, W. L. et al. Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation. Adv. Healthc. Mater. 2020, 9, 2000872.

[40]

Hu, W. T.; Wei, X. L.; Zhu, L.; Yin, D.; Wei, A. M.; Bi, X. Y.; Liu, T.; Zhou, G. M.; Qiang, Y. H.; Sun, X. H. et al. Enhancing proliferation and migration of fibroblast cells by electric stimulation based on triboelectric nanogenerator. Nano Energy 2019, 57, 600–607.

[41]

Dubey, A. K.; Gupta, S. D.; Basu, B. Optimization of electrical stimulation parameters for enhanced cell proliferation on biomaterial surfaces. J. Biomed. Mater. Res. Part B:Appl. Biomater. 2011, 98B, 18–29.

[42]

Amani, H.; Arzaghi, H.; Bayandori, M.; Dezfuli, A. S.; Pazoki-Toroudi, H.; Shafiee, A.; Moradi, L. Controlling cell behavior through the design of biomaterial surfaces: A focus on surface modification techniques. Adv. Mater. Interfaces 2019, 6, 1900572.

[43]

Huang, R. K.; Chen, X.; Dong, Y. Q.; Zhang, X. C.; Wei, Y. Q.; Yang, Z. F.; Li, W. J.; Guo, Y. X.; Liu, J.; Yang, Z. et al. MXene composite nanofibers for cell culture and tissue engineering. ACS Appl. Bio Mater. 2020, 3, 2125–2131.

[44]

Price, J. M.; Prabhakaran, A.; West, C. M. L. Predicting tumour radiosensitivity to deliver precision radiotherapy. Nat. Rev. Clin. Oncol. 2023, 20, 83–98.

[45]

Hanson, R. L.; Batchelor, E. Coordination of MAPK and p53 dynamics in the cellular responses to DNA damage and oxidative stress. Mol. Syst. Biol. 2022, 18, e11401.

[46]

Lei, H.; Fan, D. D. Conductive, adaptive, multifunctional hydrogel combined with electrical stimulation for deep wound repair. Chem. Eng. J. 2021, 421, 129578.

[47]

Funk, R. H. W. Endogenous electric fields as guiding cue for cell migration. Front. Physiol. 2015, 6, 143.

[48]

Castellano, E.; Molina-Arcas, M.; Krygowska, A. A.; East, P.; Warne, P.; Nicol, A.; Downward, J. RAS signalling through PI3-kinase controls cell migration via modulation of Reelin expression. Nat. Commun. 2016, 7, 11245.

[49]

Sieg, D. J.; Hauck, C. R.; Ilic, D.; Klingbeil, C. K.; Schaefer, E.; Damsky, C. H.; Schlaepfer, D. D. FAK integrates growth-factor and integrin signals to promote cell migration. Nat. Cell Biol. 2000, 2, 249–256.

[50]

Paul, N. R.; Jacquemet, G.; Caswell, P. T. Endocytic trafficking of integrins in cell migration. Cur. Biol. 2015, 25, R1092–R1105.

[51]

Rasool, K.; Helal, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A. Antibacterial activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674–3684.

[52]

Chattopadhyay, S.; Raines, R. T. Collagen-based biomaterials for wound healing. Biopolymers 2014, 101, 821–833.

[53]

Keskin, Y.; Taştekin, N.; Kanter, M.; Top, H.; Özdemir, F.; Erboğa, M.; Taşpınar, Ö.; Süt, N. The effect of magnetic field therapy and electric stimulation on experimental burn healing. Turk. J. Phys. Med. Rehabil. 2019, 65, 352–360.

Nano Research
Pages 9672-9687
Cite this article:
Xu S, Du C, Zhang M, et al. Electroactive and antibacterial wound dressings based on Ti3C2Tx MXene/poly(ε-caprolactone)/gelatin coaxial electrospun nanofibrous membranes. Nano Research, 2023, 16(7): 9672-9687. https://doi.org/10.1007/s12274-023-5527-z
Topics:

1405

Views

21

Crossref

22

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 09 January 2023
Revised: 20 January 2023
Accepted: 23 January 2023
Published: 31 May 2023
© Tsinghua University Press 2023
Return