Graphical Abstract

The synthesis and potential applications of nanocarbon materials have attracted much attention in recent years. Herein, we report the design and synthesis of a novel all-carbon conjugated polymeric segment of single-walled carbon nanotubes (poly(cyclo-para-phenylene) (PCPP)) and its first application as an anode material for lithium-ion batteries. The as-synthesized PCPP was characterized by Raman spectroscopy, Fourier transform infrared (FTIR), and other spectroscopies. The electrochemical characterization results show the suitability of PCPP as an anode material for lithium-ion batteries. Theoretical calculations indicate the unique structural and physical properties of PCPP. The realization of PCPP expands the scope of bottom-up synthesis of uniform carbon nanotube segments and their potential applications as new materials for lithium-ion batteries.
Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
Chen, H.; Miao, Q. Recent advances and attempts in synthesis of conjugated nanobelts. J. Phys. Org. Chem. 2020, 33, e4145.
Guo, Q. H.; Qiu, Y. Y.; Wang, M. X.; Stoddart, J. F. Aromatic hydrocarbon belts. Nat. Chem. 2021, 13, 402–419.
Lewis, S. E. Cycloparaphenylenes and related nanohoops. Chem. Soc. Rev. 2015, 44, 2221–2304.
Majewski, M. A.; Stępień, M. Bowls, hoops, and saddles: Synthetic approaches to curved aromatic molecules. Angew. Chem., Int. Ed. 2019, 58, 86–116.
Wang, J. Y.; Zhang, X. Y.; Jia, H. X.; Wang, S. D.; Du, P. W. Large π-extended and curved carbon nanorings as carbon nanotube segments. Acc. Chem. Res. 2021, 54, 4178–4190.
Xu, Y. Z.; Von Delius, M. The supramolecular chemistry of strained carbon nanohoops. Angew. Chem., Int. Ed. 2020, 59, 559–573.
Zhang, Y. Q.; Pun, S. H.; Miao, Q. The scholl reaction as a powerful tool for synthesis of curved polycyclic aromatics. Chem. Rev. 2022, 122, 14554–14593.
Chen, L.; Hernandez, Y.; Feng, X. L.; Müllen, K. From nanographene and graphene nanoribbons to graphene sheets: Chemical synthesis. Angew. Chem., Int. Ed. 2012, 51, 7640–7654.
Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539–541.
Morin, J. F.; Leclerc, M. Syntheses of conjugated polymers derived from N-alkyl-2,7-carbazoles. Macromolecules 2001, 34, 4680–4682.
Braun, D.; Heeger, A. J. Visible light emission from semiconducting polymer diodes. Appl. Phys. Lett. 1991, 58, 1982–1984.
Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Electroluminescent conjugated polymers—Seeing polymers in a new light. Angew. Chem., Int. Ed. 1998, 37, 402–428.
Pei, Q. B.; Yang, Y. Efficient photoluminescence and electroluminescence from a soluble polyfluorene. J. Am. Chem. Soc. 1996, 118, 7416–7417.
Ranger, M.; Rondeau, D.; Leclerc, M. New well-defined poly(2,7-fluorene) derivatives: Photoluminescence and base doping. Macromolecules 1997, 30, 7686–7691.
Grem, G.; Paar, C.; Stampfl, J.; Leising, G.; Huber, J.; Scherf, U. Soluble segmented stepladder poly(p-phenylenes) for blue-light-emitting diodes. Chem. Mater. 1995, 7, 2–4.
Yang, Y.; Pei, Q.; Heeger, A. J. Efficient blue light-emitting diodes from a soluble poly(para-phenylene) internal field emission measurement of the energy gap in semiconducting polymers. Synth. Met. 1996, 78, 263–267.
Strunk, K. P.; Abdulkarim, A.; Beck, S.; Marszalek, T.; Bernhardt, J.; Koser, S.; Pisula, W.; Jänsch, D.; Freudenberg, J.; Pucci, A. et al. Pristine poly(para-phenylene): Relating semiconducting behavior to kinetics of precursor conversion. ACS Appl. Mater. Interfaces 2019, 11, 19481–19488.
Basagni, A.; Sedona, F.; Pignedoli, C. A.; Cattelan, M.; Nicolas, L.; Casarin, M.; Sambi, M. Molecules-oligomers-nanowires-graphene nanoribbons: A bottom-up stepwise on-surface covalent synthesis preserving long-range order. J. Am. Chem. Soc. 2015, 137, 1802–1808.
Liu, H. P.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2, 309.
Tu, X. M.; Manohar, S.; Jagota, A.; Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 2009, 460, 250–253.
Yang, F.; Wang, M.; Zhang, D. Q.; Yang, J.; Zheng, M.; Li, Y. Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem. Rev. 2020, 120, 2693–2758.
De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.
Franklin, A. D. Nanomaterials in transistors: From high-performance to thin-film applications. Science 2015, 349, eaab2750.
He, X.; Htoon, H.; Doorn, S. K.; Pernice, W. H. P.; Pyatkov, F.; Krupke, R.; Jeantet, A.; Chassagneux, Y.; Voisin, C. Carbon nanotubes as emerging quantum-light sources. Nat. Mater. 2018, 17, 663–670.
Hong, G. S.; Diao, S.; Antaris, A. L.; Dai, H. J. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015, 115, 10816–10906.
Jeon, I.; Matsuo, Y.; Maruyama, S. Single-walled carbon nanotubes in solar cells. Top. Curr. Chem. 2018, 376, 4.
Rao, R.; Pint, C. L.; Islam, A. E.; Weatherup, R. S.; Hofmann, S.; Meshot, E. R.; Wu, F. Q.; Zhou, C. W.; Dee, N.; Amama, P. B. et al. Carbon nanotubes and related nanomaterials: Critical advances and challenges for synthesis toward mainstream commercial applications. ACS Nano 2018, 12, 11756–11784.
Yu, L. P.; Shearer, C.; Shapter, J. Recent development of carbon nanotube transparent conductive films. Chem. Rev. 2016, 116, 13413–13453.
Zhang, R. F.; Zhang, Y. Y.; Wei, F. Horizontally aligned carbon nanotube arrays: Growth mechanism, controlled synthesis, characterization, properties and applications. Chem. Soc. Rev. 2017, 46, 3661–3715.
Omachi, H.; Nakayama, T.; Takahashi, E.; Segawa, Y.; Itami, K. Initiation of carbon nanotube growth by well-defined carbon nanorings. Nat. Chem. 2013, 5, 572–576.
Sanchez-Valencia, J. R.; Dienel, T.; Gröning, O.; Shorubalko, I.; Mueller, A.; Jansen, M.; Amsharov, K.; Ruffieux, P.; Fasel, R. Controlled synthesis of single-chirality carbon nanotubes. Nature 2014, 512, 61–64.
Fort, E. H.; Donovan, P. M.; Scott, L. T. Diels-alder reactivity of polycyclic aromatic hydrocarbon bay regions: Implications for metal-free growth of single-chirality carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 16006–16007.
Fort, E. H.; Scott, L. T. Carbon nanotubes from short hydrocarbon templates. Energy analysis of the Diels–Alder cycloaddition/rearomatization growth strategy. J. Mater. Chem. 2011, 21, 1373–1381.
Golling, F. E.; Quernheim, M.; Wagner, M.; Nishiuchi, T.; Müllen, K. Concise synthesis of 3D π-extended polyphenylene cylinders. Angew. Chem., Int. Ed. 2014, 53, 1525–1528.
Han, Y.; Dong, S. Q.; Shao, J. W.; Fan, W.; Chi, C. Y. Synthesis of a sidewall fragment of a (12, 0) carbon nanotube. Angew. Chem., Int. Ed. 2021, 60, 2658–2662.
Huang, Q.; Zhuang, G. L.; Jia, H. X.; Qian, M. M.; Cui, S. S.; Yang, S. F.; Du, P. W. Photoconductive curved-nanographene/fullerene supramolecular heterojunctions. Angew. Chem., Int. Ed. 2019, 58, 6244–6249.
Wang, S. H.; Yuan, J.; Xie, J. L.; Lu, Z. H.; Jiang, L.; Mu, Y. X.; Huo, Y. P.; Tsuchido, Y.; Zhu, K. L. Sulphur-embedded hydrocarbon belts: Synthesis, structure and redox chemistry of cyclothianthrenes. Angew. Chem., Int. Ed. 2021, 60, 18443–18447.
Xia, Z. M.; Pun, S. H.; Chen, H.; Miao, Q. Synthesis of zigzag carbon nanobelts through Scholl reactions. Angew. Chem., Int. Ed. 2021, 60, 10311–10318.
Xu, Y. Z.; Wang, B. Z.; Kaur, R.; Minameyer, M. B.; Bothe, M.; Drewello, T.; Guldi, D. M.; Von Delius, M. A supramolecular [10]CPP junction enables efficient electron transfer in modular porphyrin-[10]CPP⊃fullerene complexes. Angew. Chem., Int. Ed. 2018, 57, 11549–11553.
Cheung, K. Y.; Gui, S. J.; Deng, C. F.; Liang, H. F.; Xia, Z. M.; Liu, Z. F.; Chi, L. F.; Miao, Q. Synthesis of armchair and chiral carbon nanobelts. Chem 2019, 5, 838–847.
Guo, L. F.; Yang, X. D.; Cong, H. Synthesis of macrocyclic oligoparaphenylenes derived from anthracene photodimer. Chin. J. Chem. 2018, 36, 1135–1138.
Bergman, H. M.; Kiel, G. R.; Handford, R. C.; Liu, Y.; Tilley, T. D. Scalable, divergent synthesis of a high aspect ratio carbon nanobelt. J. Am. Chem. Soc. 2021, 143, 8619–8624.
Huang, Z. A.; Chen, C.; Yang, X. D.; Fan, X. B.; Zhou, W.; Tung, C. H.; Wu, L. Z.; Cong, H. Synthesis of oligoparaphenylene-derived nanohoops employing an anthracene photodimerization-cycloreversion strategy. J. Am. Chem. Soc. 2016, 138, 11144–11147.
Scott, L. T.; Jackson, E. A.; Zhang, Q. Y.; Steinberg, B. D.; Bancu, M.; Li, B. A short, rigid, structurally pure carbon nanotube by stepwise chemical synthesis. J. Am. Chem. Soc. 2012, 134, 107–110.
Zong, C. Y.; Zhu, X. T.; Xu, Z. Q.; Zhang, L. F.; Xu, J.; Guo, J.; Xiang, Q.; Zeng, Z. B.; Hu, W. P.; Wu, J. S. et al. Isomeric dibenzoheptazethrenes for air-stable organic field-effect transistors. Angew. Chem., Int. Ed. 2021, 60, 16230–16236.
Bodwell, G. J. Carbon nanotubes: Growth potential. Nat. Nanotechnol. 2010, 5, 103–104.
Povie, G.; Segawa, Y.; Nishihara, T.; Miyauchi, Y.; Itami, K. Synthesis of a carbon nanobelt. Science 2017, 356, 172–175.
Zhang, Y. Q.; Zhu, Y. K.; Lan, D. N.; Pun, S. H.; Zhou, Z.; Wei, Z.; Wang, Y.; Lee, H. K.; Lin, C.; Wang, J. P. et al. Charging a negatively curved nanographene and its covalent network. J. Am. Chem. Soc. 2021, 143, 5231–5238.
Maust, R. L.; Li, P. H.; Shao, B. H.; Zeitler, S. M.; Sun, P. B.; Reid, H. W.; Zakharov, L. N.; Golder, M. R.; Jasti, R. Controlled polymerization of norbornene cycloparaphenylenes expands carbon nanomaterials design space. ACS Cent. Sci. 2021, 7, 1056–1065.
Peters, G. M.; Grover, G.; Maust, R. L.; Colwell, C. E.; Bates, H.; Edgell, W. A.; Jasti, R.; Kertesz, M.; Tovar, J. D. Linear and radial conjugation in extended π-electron systems. J. Am. Chem. Soc. 2020, 142, 2293–2300.
Huang, Q.; Zhuang, G. L.; Zhang, M. M.; Wang, J. Y.; Wang, S. D.; Wu, Y. Y.; Yang, S. F.; Du, P. W. A long π-conjugated poly(para-phenylene)-based polymeric segment of single-walled carbon nanotubes. J. Am. Chem. Soc. 2019, 141, 18938–18943.
Wang, S. D.; Li, X. C.; Zhang, X. Y.; Huang, P. S.; Fang, P. W.; Wang, J. H.; Yang, S. F.; Wu, K. F.; Du, P. W. A supramolecular polymeric heterojunction composed of an all-carbon conjugated polymer and fullerenes. Chem. Sci. 2021, 12, 10506–10513.
Jasti, R.; Bhattacharjee, J.; Neaton, J. B.; Bertozzi, C. R. Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: Carbon nanohoop structures. J. Am. Chem. Soc. 2008, 130, 17646–17647.
Takaba, H.; Omachi, H.; Yamamoto, Y.; Bouffard, J.; Itami, K. Selective synthesis of [12]cycloparaphenylene. Angew. Chem., Int. Ed. 2009, 48, 6112–6116.
Yamago, S.; Watanabe, Y.; Iwamoto, T. Synthesis of [8]cycloparaphenylene from a square-shaped tetranuclear platinum complex. Angew. Chem., Int. Ed. 2010, 49, 757–759.
Darzi, E. R.; Jasti, R. The dynamic, size-dependent properties of [5]-[12]cycloparaphenylenes. Chem. Soc. Rev. 2015, 44, 6401–6410.
Zhao, Z. Q.; Das, S.; Xing, G. L.; Fayon, P.; Heasman, P.; Jay, M.; Bailey, S.; Lambert, C.; Yamada, H.; Wakihara, T. et al. A 3D organically synthesized porous carbon material for lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 11952–11956.
Abdulkarim, A.; Hinkel, F.; Jänsch, D.; Freudenberg, J.; Golling, F. E.; Müllen, K. A new solution to an old problem: Synthesis of unsubstituted poly(para-phenylene). J. Am. Chem. Soc. 2016, 138, 16208–16211.
Pan, D. Y.; Wang, S.; Zhao, B.; Wu, M. H.; Zhang, H. J.; Wang, Y.; Jiao, Z. Li storage properties of disordered graphene nanosheets. Chem. Mater. 2009, 21, 3136–3142.