AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly active and durable triple conducting composite air electrode for low-temperature protonic ceramic fuel cells

Qi Huang1,§Shanshan Jiang1,§( )Yujia Wang1Jingjing Jiang2( )Yubo Chen3Jiahuan Xu4Hao Qiu1Chao Su1Daifen Chen1( )
School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, China
Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China

§ Qi Huang and Shanshan Jiang contributed equally to this work.

Show Author Information

Graphical Abstract

Herein, we report a durable and high-performance triple conducting composite, serving as an air electrode for low-temperature protonic ceramic fuel cells. Through the simple composition tuning, we achieve cobalt-containing cathode with outstanding CO2 tolerance, extremely low TEC values (15.96 × 10−6 K−1), superior ORR activity, boosting output power performance, and exceeding durability.

Abstract

Protonic ceramic fuel cells (PCFCs) are more suitable for operation at low temperatures due to their smaller activation energy (Ea). Unfortunately, the utilization of PCFC technology at reduced temperatures is limited by the lack of durable and high-activity air electrodes. A lot number of cobalt-based oxides have been developed as air electrodes for PCFCs, due to their high oxygen reduction reaction (ORR) activity. However, cobalt-based oxides usually have more significant thermal expansion coefficients (TECs) and poor thermomechanical compatibility with electrolytes. These characteristics can lead to cell delamination and degradation. Herein, we rationally design a novel cobalt-containing composite cathode material with the nominal composition of Sr4Fe4Co2O13+δ (SFC). SFC is composed of tetragonal perovskite phase (Sr8Fe8O23+δ, I4/mmm, 81 wt.%) and spinel phase (Co3O4, Fd3¯m, 19 wt.%). The SFC composite cathode displays an ultra-high oxygen ionic conductivity (0.053 S·cm−1 at 550 °C), superior CO2 tolerance, and suitable TEC value (17.01 × 10−6 K−1). SFC has both the O2−/e conduction function, and the triple conducting (H+/O2−/e) capability was achieved by introducing the protonic conduction phase (BaZr0.2Ce0.7Y0.1O3−δ, BZCY) to form SFC+BZCY (70 wt.%:30 wt.%). The SFC+BZCY composite electrode exhibits superior ORR activity at a reduced temperature with extremely low area-specific resistance (ASR, 0.677 Ω·cm2 at 550 °C), profound peak power density (PPD, 535 mW·cm−2 and 1.065 V at 550 °C), extraordinarily long-term durability (> 500 h for symmetrical cell and 350 h for single cell). Moreover, the composite has an ultra-low TEC value (15.96 × 10−6 K−1). This study proves that SFC+BZCY with triple conducting capacity is an excellent cathode for low-temperature PCFCs.

Electronic Supplementary Material

Download File(s)
12274_2023_5531_MOESM1_ESM.pdf (371.2 KB)
12274_2023_5531_MOESM2_ESM.pdf (13.1 MB)

References

[1]

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn Nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

[2]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[3]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[4]

Jiang, J. J.; Jiang, P.; Wang, D. S.; Li, Y. D. The synthetic strategies for single atomic site catalysts based on metal-organic frameworks. Nanoscale 2020, 12, 20580–20589.

[5]

Jiang, S. S.; Liu, Y.; Qiu, H.; Su, C.; Shao, Z. P. High selectivity electrocatalysts for oxygen evolution reaction and anti-chlorine corrosion strategies in seawater splitting. Catalysts 2022, 12, 261.

[6]

Su, C.; Wang, W.; Shao, Z. P. Cation-deficient perovskites for clean energy conversion. Acc. Mater. Res. 2021, 2, 477–488.

[7]

Yang, G. M.; Su, C.; Shi, H. G.; Zhu, Y. L.; Song, Y. F.; Zhou, W.; Shao, Z. P. Toward reducing the operation temperature of solid oxide fuel cells: Our past 15 years of efforts in cathode development. Energy Fuels 2020, 34, 15169–15194.

[8]

Belotti, A.; Liu, J. P.; Curcio, A.; Wang, J.; Wang, Z.; Quattrocchi, E.; Effat, M. B.; Ciucci, F. Introducing Ag in Ba0.9La0.1FeO3−δ: Combining cationic substitution with metal particle decoration. Mater. Rep.: Energy 2021, 1, 100018.

[9]

Ma, Z. L.; Li, L.; Ye, Q. R.; Dongyang, B. K.; Yang, W. Y.; Dong, F. F.; Lin, Z. Facile approach to enhance activity and CO2 resistance of a novel cobalt-free perovskite cathode for solid oxide fuel cells. ACS Appl. Mater. Interfaces 2022, 14, 30881–30888.

[10]

Bi, L.; Shafi, S. P.; Da’as, E. H.; Traversa, E. Tailoring the cathode–electrolyte interface with nanoparticles for boosting the solid oxide fuel cell performance of chemically stable proton-conducting electrolytes. Small 2018, 14, 1801231.

[11]

Liu, Z. Q.; Chen, Y.; Yang, G. M.; Yang, M. T.; Ji, R. F.; Song, Y. F.; Ran, R.; Zhou, W.; Shao, Z. P. One-pot derived thermodynamically quasi-stable triple conducting nanocomposite as robust bifunctional air electrode for reversible protonic ceramic cells. Appl. Catal. B: Environ. 2022, 319, 121929.

[12]

Teng, Z. Y.; Xiao, Z. R.; Yang, G. M.; Guo, L.; Yang, X. Q.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. P. Efficient water splitting through solid oxide electrolysis cells with a new hydrogen electrode derived from A-site cation-deficient La0.4Sr0.55Co0.2Fe0.6Nb0.2O3−δ perovskite. Mater. Today Energy 2020, 17, 100458.

[13]

Carneiro, J.; Nikolla, E. Nanoengineering of solid oxide electrochemical cell technologies: An outlook. Nano Res. 2019, 12, 2081–2092.

[14]

Duan, N. Q.; Yang, J. J.; Gao, M. R.; Zhang, B. W.; Luo, J. L.; Du, Y. H.; Xu, M. H.; Jia, L. C.; Chi, B.; Li, J. Multi-functionalities enabled fivefold applications of LaCo0.6Ni0.4O3−δ in intermediate temperature symmetrical solid oxide fuel/electrolysis cells. Nano Energy 2020, 77, 1050207.

[15]

Evans, A.; Martynczuk, J.; Stender, D.; Schneider, C. W.; Lippert, T.; Prestat, M. Low-temperature micro-solid oxide fuel cells with partially amorphous La0.6Sr0.4CoO3−δ Cathodes. Adv. Energy Mater. 2015, 5, 1400747.

[16]

Kuai, X.; Yang, G. Y.; Chen, Y. B.; Sun, H. N.; Dai, J.; Song, Y. F.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. P. Boosting the activity of BaCo0.4Fe0.4Zr0.1Y0.1O3−δ perovskite for oxygen reduction reactions at low-to-intermediate temperatures through tuning B-site cation deficiency. Adv. Energy Mater. 2019, 9, 1902384.

[17]

Gu, H. X.; Yang, G. M.; Hu, Y.; Liang, M. Z.; Chen, S. H.; Ran, R.; Xu, M. G.; Wang, W.; Zhou, W.; Shao, Z. P. Enhancing the oxygen reduction activity of PrBaCo2O5+δ double perovskite cathode by tailoring the calcination temperatures. Int. J. Hydrogen Energy 2020, 45, 25996–26004.

[18]

Cai, C. K.; Xie, M. Y.; Xue, K.; Shi, Y.; Li, S. T.; Liu, Y. Y.; An, S. L.; Yang, H. Enhanced electrochemical performance of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode via Ba-doping for intermediate-temperature solid oxide fuel cells. Nano Res. 2022, 15, 3264–3272.

[19]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[20]

Zhang, S. L.; Liu, T.; Li, C. J.; Yao, S. W.; Li, C. X.; Yang, G. J.; Liu, M. L. Atmospheric plasma-sprayed La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte membranes for intermediate-temperature solid oxide fuel cells. J. Mater. Chem. A 2015, 3, 7535–7553.

[21]

Song, Y. F.; Chen, Y. B.; Xu, M. G.; Wang, W.; Zhang, Y.; Yang, G. M.; Ran, R.; Zhou, W.; Shao, Z. P. A cobalt-free multi-phase nanocomposite as near-ideal cathode of intermediate-temperature solid oxide fuel cells developed by smart self-assembly. Adv. Mater. 2020, 32, 1906979.

[22]

Cowin, P. I.; Petit, C. T. G.; Lan, R.; Irvine, J. T. S.; Tao, S. W. Recent progress in the development of anode materials for solid oxide fuel cells. Adv. Energy Mater. 2011, 1, 314–332.

[23]

Duan, C. C.; Tong, J. H.; Shang, M.; Nikodemski, S.; Sanders, M.; Ricote, S.; Almansoori, A.; O’Hayre, R. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 2015, 349, 1321–1326.

[24]

Cao, J. F.; Jia, Y. X.; Shao, Z. P. Perovskites for protonic ceramic fuel cells: A review. Energy Environ. Sci. 2022, 15, 2200–2232.

[25]

Ferguson, K.; Dubois, A.; Albrecht, K.; Braun, R. J. High performance protonic ceramic fuel cell systems for distributed power generation. Energy Convers. Manag. 2021, 248, 114763.

[26]

Seong, A.; Kim, J.; Jeong, D.; Sengodan, S.; Liu, M. L.; Choi, S.; Kim, G. Electrokinetic proton transport in triple (H+/O2−/e) conducting oxides as a key descriptor for highly efficient protonic ceramic fuel cells. Adv. Sci. 2021, 8, 2004099.

[27]

Hu, D. Y.; Kim, J.; Niu, H. J.; Daniels, L. M.; Manning, T. D.; Chen, R. Y.; Liu, B. W.; Feetham, R.; Claridge, J. B.; Rosseinsky, M. J. High-performance protonic ceramic fuel cell cathode using protophilic mixed ion and electron conducting material. J. Mater. Chem. A 2022, 10, 2559–2566.

[28]

Lv, X. Q.; Chen, H. L.; Zhou, W.; Li, S. D.; Shao, Z. P. A CO2-tolerant SrCo0.8Fe0.15Zr0.05O3−δ cathode for proton-conducting solid oxide fuel cells. J. Mater. Chem. A 2020, 8, 11292–11301.

[29]

Zhou, C.; Sunarso, J.; Song, Y. F.; Dai, J.; Zhang, J. X.; Gu, B. B.; Zhou, W.; Shao, Z. P. New reduced-temperature ceramic fuel cells with dual-ion conducting electrolyte and triple-conducting double perovskite Cathode. J. Mater. Chem. A 2019, 7, 13265–13274.

[30]

Liu, M. F.; Gao, J. F.; Liu, X. Q.; Meng, G. Y. High performance of anode supported BaZr0.1Ce0.7Y0.2O3−δ (BZCY) electrolyte cell for IT-SOFC. Int. J. Hydrogen Energ 2011, 36, 13741–13745.

[31]

Xu, X.; Wang, H. Q.; Fronzi, M.; Wang, X. F.; Bi, L.; Traversa, E. Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance. J. Mater. Chem. A 2019, 7, 20624–20632.

[32]

Shimada, H.; Yamaguchi, Y.; Sumi, H.; Mizutani, Y. Performance comparison of perovskite composite cathodes with BaZr0.1Ce0.7Y0.1Yb0.1O3−δ in anode-supported protonic ceramic fuel cells. J. Electrochem. Soc. 2020, 167, 124506.

[33]

Zhu, Z. W.; Qian, J.; Wang, Z. T.; Dang, J. J.; Liu, W. High-performance anode-supported solid oxide fuel cells based on nickel-based cathode and Ba(Zr0.1Ce0.7Y0.2)O3−δ electrolyte. J. Alloys Compd. 2013, 581, 832–835.

[34]

Zhang, Y.; Chen, B.; Guan, D. Q.; Xu, M. G.; Ran, R.; Ni, M.; Zhou, W.; O’Hayre, R.; Shao, Z. P. Thermal-expansion offset for high-performance fuel cell cathodes. Nature 2021, 591, 246–251.

[35]

Thaheem, I.; Kim, K. J.; Lee, J. J.; Joh, D. W.; Jeong, I.; Lee, K. T. High performance Mn1.3Co1.3Cu0.4O4 spinel based composite cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. A 2019, 7, 19696–19703.

[36]

Xu, Y. J.; Wen, Z. Y.; Wang, S. R.; Wen, T. L. Cu doped Mn-Co spinel protective coating on ferritic stainless steels for SOFC interconnect applications. Solid State Ionics 2011, 192, 561–564.

[37]

Shao, L.; Wang, Q.; Fan, L. S.; Wang, P. X.; Zhang, N. Q.; Sun, K. N. Copper cobalt spinel as a high performance cathode for intermediate temperature solid oxide fuel cells. Chem. Commun. 2016, 52, 8615–8618.

[38]

Zhen, S. Y.; Sun, W.; Li, P. Q.; Tang, G. Z.; Rooney, D.; Sun, K. N.; Ma, X. X. High performance cobalt-free Cu1.4Mn1.6O4 spinel oxide as an intermediate temperature solid oxide fuel cell cathode. J. Power Sources 2016, 315, 140–144.

[39]

Zhang, X. M.; Liu, L.; Zhao, Z.; Shang, L.; Tu, B. F.; Ou, D. R.; Cui, D. A.; Cheng, M. J. High performance solid oxide fuel cells with Co1.5Mn1. 5O4 infiltrated (La, Sr)MnO3-yittria stabilized zirconia cathodes. Int. J. Hydrogen Energy 2015, 40, 3332–3337.

[40]

Jiang, S. S.; Sunarso, J.; Zhou, W.; Shao, Z. P. The significant effect of the phase composition on the oxygen reduction reaction activity of a layered oxide cathode. J. Mater. Chem. A 2013, 1, 11026–11032.

[41]

Wan, T. H.; Saccoccio, M.; Chen, C.; Ciucci, F. Influence of the discretization methods on the distribution of relaxation times deconvolution: Implementing radial basis functions with DRTtools. Electrochim. Acta 2015, 184, 483–499.

[42]

Song, Y. F.; Chen, Y. B.; Wang, W.; Zhou, C.; Zhong, Y. J.; Yang, G. M.; Zhou, W.; Liu, M. L.; Shao, Z. P. Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode. Joule 2019, 3, 2842–2853.

[43]

Zou, D.; Yi, Y. N.; Song, Y. F.; Guan, D. Q.; Xu, M. G.; Ran, R. Wang, W.; Zhou, W.; Shao, Z. P. The BaCe0.16Y0.04Fe0.8O3−δ nanocomposite: A new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures. J. Mater. Chem. A 2022, 10, 5381–5390.

[44]

Gu, H. X.; Su, C.; Zhou, C.; Liu, Y.; Zhang, Y.; Yang, G. M.; Zhou, W.; Shao, Z. P. LaBa0.8Ca0.2Co2O5+δ cathode with superior CO2 resistance and high oxygen reduction activity for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy 2022, 47, 16214–16221.

[45]

Xu, Y. S.; Xu, X.; Bi, L. A high-entropy spinel ceramic oxide as the cathode for proton-conducting solid oxide fuel cells. J. Adv. Ceram. 2022, 11, 794–804.

[46]

Gu, H. X.; Sunarso, J.; Yang, G. M.; Zhou, C.; Song, Y. F.; Zhang, Y.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. P. Turning detrimental effect into benefits: Enhanced oxygen reduction reaction activity of cobalt-free perovskites at intermediate temperature via CO2-induced surface activation. ACS Appl. Mater. Interfaces 2020, 12, 16417–16425.

[47]

Wang, M.; Su, C.; Zhu, Z. H.; Wang, H.; Ge, L. Composite cathodes for protonic ceramic fuel cells: Rationales and materials. Composites Part B: Eng. 2022, 238, 109881.

[48]

Ren, R. Z.; Wang, Z. H.; Xu, C. M.; Sun, W.; Qiao, J. S.; Rooneyc, D. W.; Sun, K. N. Tuning the defects of the triple conducting oxide BaCo0.4Fe0.4Zr0.1Y0.1O3−δ perovskite toward enhanced cathode activity of protonic ceramic fuel cells. J. Mater. Chem. A 2019, 7, 18365–18372.

[49]

Tong, H.; Fu, M.; Yang, Y.; Chen, F. L.; Tao, Z. T. A novel self-assembled cobalt-free perovskite composite cathode with triple-conduction for intermediate proton-conducting solid oxide fuel cells. Adv. Funct. Mater. 2022, 32, 2209695.

[50]

Fan, L. D.; Su, P. C. Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2−/e) conducting cathode for low temperature proton conducting solid oxide fuel cells. J. Power Sources 2016, 306, 367–377.

[51]

Taillades, G.; Pers, P.; Mao, V.; Taillades, M. High performance anode-supported proton ceramic fuel cell elaborated by wet powder spraying. Int. J. Hydrogen Energy 2016, 41, 12330–12336.

[52]

Cui, J. J.; Wang, J. K.; Zhang, X. W.; Li, G. J.; Wu, K.; Cheng, Y. H.; Zhou, J. Enhanced oxygen reduction reaction through Ca and Co co-doped YFeO3 as cathode for protonic ceramic fuel cells. J. Power Sources 2019, 413, 148–157.

[53]

Wei, K. W.; Li, N.; Wu, Y. J.; Song, W. C.; Wang, X. X.; Guo, L. T.; Khan, M.; Wang, S. R.; Zhou, F. B.; Ling, Y. H. Characterization and optimization of highly active and Ba-deficient BaCo0.4Fe0.4Zr0.1Y0.1O3−δ-based cathode materials for protonic ceramics fuel cells. Ceram. Int. 2019, 45, 18583–18591.

[54]

Xie, D.; Ling, A.; Yan, D.; Jia, L. C.; Chi, B.; Pu, J.; Li, J. A comparative study on the composite cathodes with proton conductor and oxygen ion conductor for proton-conducting solid oxide fuel cell. Electrochim. Acta 2020, 344, 136143.

[55]

Sun, S. C.; Cheng, Z. SrCo0.8Nb0.1Ta0.1O3−δ based cathodes for electrolyte-supported proton-conducting solid oxide fuel cells: Comparison with Ba0.5Sr0.5Co0.8Fe0.2O3−δ based cathodes and implications. J. Electrochem. Soc. 2020, 167, 024514.

[56]

Xie, D.; Li, K.; Yang, J.; Yan, D.; Jia, L. C.; Chi, B.; Pu, J.; Li, J. High-performance La0.5(Ba0.75Ca0.25)0.5Co0.8Fe0.2O3−δ cathode for proton-conducting solid oxide fuel cells. Int. J. Hydrogen Energy 2021, 46, 10007–10014.

[57]

Seong, A.; Jeong, D.; Kim, M.; Choi, S.; Kim, G. Performance comparison of composite cathode: Mixed ionic and electronic conductor and triple ionic and electronic conductor with BaZr0.1Ce0.7Y0.1Yb0.1O3−δ for highly efficient protonic ceramic fuel cells. J. Power Sources 2022, 530, 231241.

[58]

Shi, H. G.; Su, C.; Xu, X. M.; Pan, Y. L.; Yang, G. M.; Ran, R.; Shao, Z. P. Building Ruddlesden–Popper and single perovskite nanocomposites: A new strategy to develop high-performance cathode for protonic ceramic fuel cells. Small 2021, 17, 2101872.

[59]

Chen, J. Y.; Li, J.; Jia, L. C.; Moussa, I.; Chi, B.; Pu, J.; Li, J. A novel layered perovskite Nd(Ba0.4Sr0.4Ca0.2)Co1.6Fe0.4O5+δ as cathode for proton-conducting solid oxide fuel cells. J. Power Sources 2019, 428, 13–19.

[60]

Wang, D.; Xia, Y. P.; Lv, H. L.; Miao, L. N.; Bi, L.; Liu, W. PrBaCo2−xTaxO5+δ based composite materials as cathodes for proton-conducting solid oxide fuel cells with high CO2 resistance. Int. J. Hydrogen Energy 2020, 45, 31017–31026.

[61]

Liang, M. Z.; Zhu, Y. J.; Song, Y. F.; Guan, D. Q.; Luo, Z. X.; Yang, G. M.; Jiang, S. P.; Zhou, W.; Ran, R.; Shao, Z. P. A new durable surface nanoparticles-modified perovskite cathode for protonic ceramic fuel cells from selective cation exsolution under oxidizing atmosphere. Adv. Mater. 2022, 34, 2106379.

[62]

Liu, S. L.; Wu, M. L.; Lu, L. Y.; Ni, J. P.; Ni, C. S.; Irvine, J. T. S. La0.5Ba0.5CuxFe1−xO3−δ as cathode for high-performance proton-conducting solid oxide fuel cell. Sep. Purif. Technol. 2022, 297, 121485.

[63]

Wang, Z.; Lv, P. F.; Yang, L.; Guan, R.; Jiang, J. D.; Jin, F. J.; He, T. M. Ba0.95La0.05Fe0.8Zn0.2O3−δ cobalt-free perovskite as a triple-conducting cathode for proton-conducting solid oxide fuel cells. Ceram. Int. 2020, 46, 18216–18223.

[64]

Ling, Y.; Zhao, L.; Liu, X.; Lin, B. Tailoring electrochemical property of layered perovskite cathode by Cu-doping for proton-conducting IT-SOFCs. Fuel Cells 2015, 15, 384–389.

[65]

Liu, J. J.; Ding, J. W.; Miao, L. N.; Gong, Z.; Li, K.; Liu, W. High performance Ba0.95Ca0.05Fe0.9−xSnxY0.1O3−δ-SDC as cobalt-free cathode for intermediate-temperature proton-conducting solid oxide fuel cells with BaZr0.1Ce0.7Y0.2O3−δ electrolyte. J. Alloys Compd. 2019, 786, 163–168.

[66]

Ma, Z. L.; Ye, Q. R.; Zhang, B. K.; Yang, W. Y.; Dong, F. F.; Ni, M.; Lin, Z. A highly efficient and robust bifunctional perovskite-type air electrode with triple-conducting behavior for low-temperature solid oxide fuel cells. Adv. Funct. Mater. 2022, 32, 2209054.

Nano Research
Pages 9280-9288
Cite this article:
Huang Q, Jiang S, Wang Y, et al. Highly active and durable triple conducting composite air electrode for low-temperature protonic ceramic fuel cells. Nano Research, 2023, 16(7): 9280-9288. https://doi.org/10.1007/s12274-023-5531-3
Topics:

1081

Views

41

Crossref

55

Web of Science

53

Scopus

1

CSCD

Altmetrics

Received: 03 December 2022
Revised: 22 January 2023
Accepted: 25 January 2023
Published: 22 February 2023
© Tsinghua University Press 2023
Return