AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Interface engineering of MXene-based heterostructures for lithium-sulfur batteries

Siyu Wu1Xiang Li1Yongzheng Zhang1,2( )Qinghua Guan3Jian Wang3,4( )Chunyin Shen1Hongzhen Lin3Jitong Wang1Yanli Wang1Liang Zhan1( )Licheng Ling1
State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
i-Lab & CAS Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
Helmholtz Institute Ulm (HIU), Ulm D89081, Germany
Show Author Information

Graphical Abstract

Interface engineering of MXene-based heterostructures is an effective way to enhance the electrochemical performances of lithium-sulfur batteries because of the unique heterointerface structures. An overview of the recent progress in MXene-based heterostructures in sulfur hosts, modification layers, and Li protection layers is provided. The future developments of MXene-based materials for Li-S batteries are outlined.

Abstract

High energy density and low cost make lithium-sulfur (Li-S) batteries as one of the next generation's promising energy storage systems. However, the following problems need to be solved before commercialization: (i) the shuttling effect and sluggish redox kinetics of lithium polysulfides in sulfur cathode; (ii) the formation of lithium dendrites and the crack of solid electrolyte interphase; (iii) the large volume changes during charge and discharge processes. MXenes, as newly emerging two-dimensional transition metal carbides/nitrides/carbonitrides, have attracted widespread attention due to their abundant active surface terminals, adjustable vacancies, and high electrical conductivity. Designing MXene-based heterogeneous structures is expected to solve the stacking problem induced by hydrogen bonds or Van der Waals force and to provide other charming physiochemical properties. Herein, we generalize the design principles of MXene-based heterostructures and their functions, i.e., adsorption and catalysis in advanced conversion-based Li-S batteries. Firstly, the physiochemical properties of MXene and MXene-based heterostructures are briefly introduced. Secondly, the catalytic functions of MXene-based heterostructures with the compositional constituents including carbon materials, metal compounds, organic frameworks, polymers, single atoms and special high-entropy MXenes are comprehensively summarized in sulfur cathodes and lithium anodes. Finally, the challenges of MXene-based heterostructure in current Li-S batteries are pointed out and we also provide some enlightenments for future developments in high-energy-density Li-S batteries.

References

[1]

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

[2]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

[3]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

[4]
Yin, W. N.; Cai, Y. T.; Xie, L. B.; Huang, H.; Zhu, E. C.; Pan, J. N.; Bu, J. Q.; Chen, H.; Yuan, Y.; Zhuang, Z. C. et al. Revisited electrochemical gas evolution reactions from the perspective of gas bubbles. Nano Res., in press, https://doi.org/10.1007/s12274-022-5133-5.
[5]

Li, S. D.; Zhuang, Z. C.; Xia, L. X.; Zhu, J. X.; Liu, Z. A.; He, R. H.; Luo, W.; Huang, W. Z.; Shi, C. W.; Zhao, Y. et al. Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater. 2023, 66, 160–168.

[6]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q.; Moskaleva, L. V. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[7]

Kwade, A.; Haselrieder, W.; Leithoff, R.; Modlinger, A.; Dietrich, F.; Droeder, K. Current status and challenges for automotive battery production technologies. Nat. Energy 2018, 3, 290–300.

[8]

Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

[9]

Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Single-atom yttrium engineering Janus electrode for rechargeable Na-S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.

[10]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[11]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[12]

Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.

[13]

Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114.

[14]

Zhang, X. Q.; Jin, Q.; Nan, Y. L.; Hou, L. P.; Li, B. Q.; Chen, X.; Jin, Z. H.; Zhang, X. T.; Huang, J. Q.; Zhang, Q. Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium-sulfur batteries. Angew. Chem., Int. Ed. 2021, 60, 15503–15509.

[15]

Wang, R. H.; Cui, W. S.; Chu, F. L.; Wu, F. X. Lithium metal anodes: Present and future. J. Energy Chem. 2020, 48, 145–159.

[16]

Zhao, M.; Li, X. Y.; Chen, X.; Li, B. Q.; Kaskel, S.; Zhang, Q.; Huang, J. Q. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium-sulfur batteries. eScience 2021, 1, 44–52.

[17]

Piao, Z. H.; Xiao, P. T.; Luo, R. P.; Ma, J. B.; Gao, R. H.; Li, C.; Tan, J. Y.; Yu, K.; Zhou, G. M.; Cheng, H. M. Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries. Adv. Mater. 2022, 34, 2108400.

[18]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

[19]

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

[20]

Pang, Q.; Shyamsunder, A.; Narayanan, B.; Kwok, C. Y.; Curtiss, L. A.; Nazar, L. F. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat. Energy 2018, 3, 783–791.

[21]

Service, R. F. Lithium-sulfur batteries poised for leap. Science 2018, 359, 1080–1081.

[22]

Sun, C. B.; Sheng, J. Z.; Zhang, Q.; Gao, R. H.; Han, Z. Y.; Li, C.; Xiao, X.; Qiu, L.; Zhou, G. M. Self-extinguishing Janus separator with high safety for flexible lithium-sulfur batteries. Sci. China Mater. 2022, 65, 2169–2178.

[23]

Chen, R. J.; Zhao, T.; Wu, F. From a historic review to horizons beyond: Lithium-sulphur batteries run on the wheels. Chem. Commun. 2015, 51, 18–33.

[24]

Li, C.; Zhang, Q.; Sheng, J. Z.; Chen, B.; Gao, R. H.; Piao, Z. H.; Zhong, X. W.; Han, Z. Y.; Zhu, Y. F.; Wang, J. L. et al. A quasi-intercalation reaction for fast sulfur redox kinetics in solid-state lithium-sulfur batteries. Energy Environ. Sci. 2022, 15, 4289–4300.

[25]

Li, X.; Guan, Q. H.; Zhuang, Z. C.; Zhang, Y. Z.; Lin, Y. H.; Wang, J.; Shen, C. Y.; Lin, H. Z.; Wang, Y. L.; Zhan, L. et al. Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li-S batteries. ACS Nano 2023, 17, 1653–1662.

[26]

Wang, J.; Jia, L. J.; Liu, H. T.; Wang, C.; Zhong, J.; Xiao, Q. B.; Yang, J.; Duan, S. R.; Feng, K.; Liu, N. et al. Multi-ion modulated single-step synthesis of a nanocarbon embedded with a defect-rich nanoparticle catalyst for a high loading sulfur cathode. ACS Appl. Mater. Interfaces 2020, 12, 12727–12735.

[27]

Wang, J.; Hu, H. M.; Duan, S. R.; Xiao, Q. B.; Zhang, J.; Liu, H. T.; Kang, Q.; Jia, L. J.; Yang, J.; Xu, W. L. et al. Construction of moisture-stable lithium diffusion-controlling layer toward high performance dendrite-free lithium anode. Adv. Funct. Mater. 2022, 32, 2110468.

[28]

Ren, X. D.; Liu, Z. F.; Zhang, M.; Li, D. S.; Yuan, S. X.; Lu, C. X. Review of cathode in advanced Li-S batteries: The effect of doping atoms at micro levels. ChemElectroChem. 2021, 8, 3457–3471.

[29]

Liu, W. L.; Fan, X. J.; Xu, B.; Chen, P.; Tang, D. J.; Meng, F. C.; Zhou, R. L.; Liu, J. H. MnO-inlaid hierarchically porous carbon hybrid for lithium-sulfur batteries. Nano Select 2021, 2, 573–580.

[30]

Yu, S. L.; Sun, Y. J.; Song, L. X.; Cao, X.; Chen, L.; An, X. T.; Liu, X. H.; Cai, W. L.; Yao, T.; Song, Y. Z. et al. Vanadium atom modulated electrocatalyst for accelerated Li-S chemistry. Nano Energy 2021, 89, 106414.

[31]

Gao, X. J.; Yang, X. F.; Li, M. S.; Sun, Q.; Liang, J. N.; Luo, J.; Wang, J. W.; Li, W. H.; Liang, J. W.; Liu, Y. L. et al. Cobalt-doped SnS2 with dual active centers of synergistic absorption-catalysis effect for high-S loading Li-S batteries. Adv. Funct. Mater. 2019, 29, 1806724.

[32]

Park, J.; Yu, B. C.; Park, J. S.; Choi, J. W.; Kim, C.; Sung, Y. E.; Goodenough, J. B. Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li-S battery. Adv. Energy Mater. 2017, 7, 1602567.

[33]

Han, Z. Y.; Ren, H. R.; Huang, Z. J.; Zhang, Z. J.; Zhang, Y. B.; Gu, S. C.; Zhang, C.; Liu, W. H.; Yang, J. L.; Zhou, G. M.; Yang, Q. H. et al. A permselective coating protects lithium anode toward a practical lithium-sulfur battery. ACS Nano 2013, 17, 4453–4462.

[34]

Zhao, Y. Y.; Ye, Y. S.; Wu, F.; Li, Y. J.; Li, L.; Chen, R. J. Anode interface engineering and architecture design for high-performance lithium-sulfur batteries. Adv. Mater. 2019, 31, 1806532.

[35]

Lin, D. C.; Liu, Y.; Pei, A.; Cui, Y. Nanoscale perspective: Materials designs and understandings in lithium metal anodes. Nano Res. 2017, 10, 4003–4026.

[36]

Chen, P.; Wang, T. Y.; Tang, F. L.; Chen, G. L.; Wang, C. Y. Elaborate interface design of CoS2/Fe7S8/NG heterojunctions modified on a polypropylene separator for efficient lithium-sulfur batteries. Chem. Eng. J. 2022, 446, 136990.

[37]

Sheng, J. Z.; Zhang, Q.; Sun, C. B.; Wang, J. X.; Zhong, X. W.; Chen, B.; Li, C.; Gao, R. H.; Han, Z. Y.; Zhou, G. M. Crosslinked nanofiber-reinforced solid-state electrolytes with polysulfide fixation effect towards high safety flexible lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2203272.

[38]

Li, Y. J.; Wu, J. B.; Zhang, B.; Wang, W. Y.; Zhang, G. Q.; Seh, Z. W.; Zhang, N.; Sun, J.; Huang, L.; Jiang, J. J. et al. Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms. Energy Storage Mater. 2020, 30, 250–259.

[39]

Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional transition metal carbides. ACS Nano 2012, 6, 1322–1331.

[40]

Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th Anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.

[41]

Ronchi, R. M.; Arantes, J. T.; Santos, S. F. Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceram. Int. 2019, 45, 18167–18188.

[42]

Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P. L.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 2012, 16, 61–64.

[43]

Deysher, G.; Shuck, C. E.; Hantanasirisakul, K.; Frey, N. C.; Foucher, A. C.; Maleski, K.; Sarycheva, A.; Shenoy, V. B.; Stach, E. A.; Anasori, B. et al. Synthesis of Mo4ValC4 MAX Phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano 2020, 14, 204–217.

[44]

Jin, Q.; Zhang, N.; Zhu, C. C.; Gao, H.; Zhang, X. T. Rationally designing S/Ti3C2Tx as a cathode material with an interlayer for high-rate and long-cycle lithium-sulfur batteries. Nanoscale 2018, 10, 16935–16942.

[45]

Li, T. F.; Yao, L. L.; Liu, Q. L.; Gu, J. J.; Luo, R. C.; Li, J. H.; Yan, X. D.; Wang, W. Q.; Liu, P.; Chen, B. et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew. Chem., Int. Ed. 2018, 57, 6115–6119.

[46]

Pang, S. Y.; Wong, Y. T.; Yuan, S. G.; Liu, Y.; Tsang, M. K.; Yang, Z. B.; Huang, H. T.; Wong, W. T.; Hao, J. H. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 2019, 141, 9610–9616.

[47]

Li, M.; Lu, J.; Luo, K.; Li, Y. B.; Chang, K. K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P. et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 2019, 141, 4730–4737.

[48]

Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

[49]

Braff, W. A.; Mueller, J. M.; Trancik, J. E. Value of storage technologies for wind and solar energy. Nat. Clim. Change 2016, 6, 964–969.

[50]

Dong, Y. F.; Zheng, S. H.; Qin, J. Q.; Zhao, X. J.; Shi, H. D.; Wang, X. H.; Chen, J.; Wu, Z. S. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano 2018, 12, 2381–2388.

[51]

Li, H.; Liu, A. M.; Ren, X. F.; Yang, Y. N.; Gao, L. G.; Fan, M. Q.; Ma, T. L. A black phosphorus/Ti3C2 MXene nanocomposite for sodium-ion batteries: A combined experimental and theoretical study. Nanoscale 2019, 11, 19862–19869.

[52]

Guo, X.; Xie, X. Q.; Choi, S.; Zhao, Y. F.; Liu, H.; Wang, C. Y.; Chang, S.; Wang, G. X. Sb2O3/MXene (Ti3C2Tx) hybrid anode materials with enhanced performance for sodium-ion batteries. J. Mater. Chem. A 2017, 5, 12445–12452.

[53]

Wu, J. B.; Li, Q.; Shuck, C. E.; Maleski, K.; Alshareef, H. N.; Zhou, J.; Gogotsi, Y.; Huang, L. An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes. Nano Res. 2022, 15, 535–541.

[54]

Zeraati, A. S.; Mirkhani, S. A.; Sun, P. C.; Naguib, M.; Braun, P. V.; Sundararaj, U. Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale 2021, 13, 3572–3580.

[55]

Jiang, X. T.; Kuklin, A. V.; Baev, A.; Ge, Y. Q.; Ågren, H.; Zhang, H.; Prasad, P. N. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020, 848, 1–58.

[56]

Lang, Z. Q.; Zhuang, Z. C.; Li, S. K.; Xia, L. X.; Zhao, Y.; Zhao, Y. L.; Han, C. H.; Zhou, L. MXene surface terminations enable strong metal–support interactions for efficient methanol oxidation on palladium. ACS Appl. Mater. Interfaces 2020, 12, 2400–2406.

[57]

Li, Z. L.; Zhuang, Z. C.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M. C.; Zhu, J. X.; Lang, Z. Q.; Feng, S. H.; Chen, W. et al. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 2018, 30, 1803220.

[58]

Shang, M. W.; Shovon, O. G.; Wong, F. E. Y.; Niu, J. J. A BF3-doped MXene dual-layer interphase for a reliable lithium-metal anode. Adv. Mater. 2023, 35, 2210111.

[59]

Gu, J. N.; Chen, H.; Shi, Y.; Cao, Z. J.; Du, Z. G.; Li, B.; Yang, S. B. Eliminating lightning-rod effect of lithium anodes via sine-wave analogous MXene layers. Adv. Energy Mater. 2022, 12, 2201181.

[60]

Zhang, D.; Wang, S.; Li, B.; Gong, Y. J.; Yang, S. B. Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes. Adv. Mater. 2019, 31, 1901820.

[61]

Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 3907–3911.

[62]

Rao, D. W.; Zhang, L. Y.; Meng, Z. S.; Zhang, X. R.; Wang, Y. H.; Qiao, G. J.; Shen, X. Q.; Xia, H.; Liu, J. H.; Lu, R. F. Ultrahigh energy storage and ultrafast ion diffusion in borophene-based anodes for rechargeable metal ion batteries. J. Mater. Chem. A 2017, 5, 2328–2338.

[63]

Liang, X.; Rangom, Y.; Kwok, C. Y.; Pang, Q.; Nazar, L. F. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 2017, 29, 1603040.

[64]

Wang, D. S.; Li, F.; Lian, R. Q.; Xu, J.; Kan, D. X.; Liu, Y. H.; Chen, G.; Gogotsi, Y.; Wei, Y. J. A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium-sulfur batteries. ACS Nano 2019, 13, 11078–11086.

[65]

Chen, Li.; Yue, L. G.; Wang, X. Y.; Wu, S. Y.; Wang, W.; Lu, D. Z.; Liu, X.; Zhou, W. L.; Li, Y. Y. Synergistically accelerating adsorption–electrocataysis of sulfur species via interfacial built-in electric field of SnS2-MXene Mott-Schottky heterojunction in Li-S batteries. Small 2023, 19, 2206462.

[66]

Huang, S. Z.; Wang, Z. H.; Von Lim, Y.; Wang, Y.; Li, Y.; Zhang, D. H.; Yang, H. Y. Recent advances in heterostructure engineering for lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2003689.

[67]

Pang, J. B.; Chang, B.; Liu, H.; Zhou, W. J. Potential of MXene-based heterostructures for energy conversion and storage. ACS Energy Lett. 2022, 7, 78–96.

[68]

Alferov, Z. I. The history and future of semiconductor heterostructures. Semiconductors 1998, 32, 1–14.

[69]

Huang, J. Z.; Zhuang, Z. C.; Zhao, Y.; Chen, J. Q.; Zhuo, Z. W.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Back-gated van der Waals heterojunction manipulates local charges toward fine-tuning hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202203522.

[70]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2022, 62, e202212335.

[71]

Zhang, B.; Luo, C.; Zhou, G. M.; Pan, Z. Z.; Ma, J. B.; Nishihara, H.; He, Y. B.; Kang, F. Y.; Lv, W.; Yang, Q. H. Lamellar MXene composite aerogels with sandwiched carbon nanotubes enable stable lithium-sulfur batteries with a high sulfur loading. Adv. Funct. Mater. 2021, 31, 2100793.

[72]

Gan, R. Y.; Yang, N.; Dong, Q.; Fu, N.; Wu, R.; Li, C. P.; Liao, Q.; Li, J.; Wei, Z. D. Enveloping ultrathin Ti3C2 nanosheets on carbon fibers: A high-density sulfur loaded lithium-sulfur battery cathode with remarkable cycling stability. J. Mater. Chem. A 2020, 8, 7253–7260.

[73]

Tang, X. Y.; Gan, R. Y.; Tan, L. Q.; Tong, C.; Li, C. P.; Wei, Z. D. 3D Net-like GO-d-Ti3C2Tx MXene aerogels with catalysis/adsorption dual effects for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 55235–55242.

[74]

Liu, P.; Qu, L.; Tian, X. L.; Yi, Y. K.; Xia, J. X.; Wang, T.; Nan, J. Z.; Yang, P.; Wang, T.; Fang, B. R. et al. Ti3C2Tx/graphene oxide free-standing membranes as modified separators for lithium-sulfur batteries with enhanced rate performance. ACS Appl. Energy Mater. 2020, 3, 2708–2718.

[75]

Zhou, H. Y.; Sui, Z. Y.; Amin, K.; Lin, L. W.; Wang, H. Y.; Han, B. H. Investigating the electrocatalysis of a Ti3C2/carbon hybrid in polysulfide conversion of lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2020, 12, 13904–13913.

[76]

Zhang, H.; Yang, L.; Zhang, P. G.; Lu, C. J.; Sha, D. W.; Yan, B. Z.; He, W.; Zhou, M.; Zhang, W.; Pan, L. et al. MXene-derived TinO2n−1 quantum dots distributed on porous carbon nanosheets for stable and long-life Li-S batteries: Enhanced polysulfide mediation via defect engineering. Adv. Mater. 2021, 33, 2008447.

[77]

Zhao, J.; Qi, Y. R.; Yang, Q. J.; Huang, T.; Wang, H.; Wang, Y. Y.; Niu, Y. B.; Liu, Y. J.; Bao, S. J.; Xu, M. W. Chessboard structured electrode design for Li-S batteries based on MXene nanosheets. Chem. Eng. J. 2022, 429, 131997.

[78]

Bao, W. Z.; Xie, X. Q.; Xu, J.; Guo, X.; Song, J. J.; Wu, W. J.; Su, D. W.; Wang, G. X. Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium-sulfur battery. Chem.—Eur. J. 2017, 23, 12613–12619.

[79]

Xia, J.; Chen, W. X.; Yang, Y.; Guan, X. G.; Yang, T.; Xiao, M. J.; Zhang, S. C.; Xing, Y. L.; Lu, X.; Zhuo, G. M. In-situ growth of ultrathin sulfur microcrystal on MXene-based 3D matrice for flexible lithium-sulfur batteries. EcoMat. 2022, 4, e12183.

[80]

Wang, T.; Liu, Y. Y.; Zhang, X. M.; Wang, J. Y.; Zhang, Y. G.; Li, Y. B.; Zhu, Y. J.; Li, G. R.; Wang, X. Interspersing partially oxidized V2C nanosheets and carbon nanotubes toward multifunctional polysulfide barriers for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 56085–56094.

[81]

Jiao, L.; Zhang, C.; Geng, C. N.; Wu, S. C.; Li, H.; Lv, W.; Tao, Y.; Chen, Z. J.; Zhou, G. M.; Li, J. et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1900219.

[82]

Wei, C. H.; Tian, M.; Wang, M. L.; Shi, Z. X.; Yu, L. H.; Li, S.; Fan, Z. D.; Yang, R. Z.; Sun, J. Y. Universal in situ crafted MOx-MXene heterostructures as heavy and multifunctional hosts for 3D-printed Li-S batteries. ACS Nano 2020, 14, 16073–16084.

[83]

Wang, Z. G.; Yu, K.; Feng, Y.; Qi, R. J.; Ren, J.; Zhu, Z. Q. VO2(p)-V2C(MXene) grid structure as a lithium polysulfide catalytic host for high-performance Li-S battery. ACS Appl. Mater. Interfaces 2019, 11, 44282–44292.

[84]

Xu, M. Y.; Wu, T. L.; Qi, J.; Zhou, D.; Xiao, Z. B. V2C/VO2 nanoribbon intertwined nanosheet dual heterostructure for highly flexible and robust lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 21429–21439.

[85]

Wu, S. Y.; Wang, W.; Shan, J. W.; Wang, X. Y.; Lu, D. Z.; Zhu, J. L.; Liu, Z. G.; Yue, L. G.; Li, Y. Y. Conductive 1T-VS2-MXene heterostructured bidirectional electrocatalyst enabling compact Li-S batteries with high volumetric and areal capacity. Energy Storage Mater. 2022, 49, 153–163.

[86]

Tian, S. H.; Zeng, Q.; Liu, G.; Huang, J. J.; Sun, X.; Wang, D.; Yang, H. C.; Liu, Z.; Mo, X. C.; Wang, Z. X. et al. Multi-dimensional composite frame as bifunctional catalytic medium for ultra-fast charging lithium-sulfur battery. Nano-Micro Lett. 2022, 14, 196.

[87]

Yang, C. Y.; Li, Y.; Peng, W. C.; Zhang, F. B.; Fan, X. B. In situ N-doped CoS2 anchored on MXene toward an efficient bifunctional catalyst for enhanced lithium-sulfur batteries. Chem. Eng. J. 2022, 427, 131792.

[88]

Wang, W.; Huai, L. Y.; Wu, S. Y.; Shan, J. W.; Zhu, J. L.; Liu, Z. G.; Yue, L. G.; Li, Y. Y. Ultrahigh-volumetric-energy-density lithium-sulfur batteries with lean electrolyte enabled by cobalt-doped MoSe2/Ti3C2Tx MXene bifunctional catalyst. ACS Nano 2021, 15, 11619–11633.

[89]

Ye, Z. Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. J. Enhanced catalytic conversion of polysulfide using 1D CoTe and 2D MXene for heat-resistant and lean-electrolyte Li-S batteries. Chem. Eng. J. 2022, 430, 132734.

[90]

Wang, H.; Cui, Z.; He, S. A.; Zhu, J. Q.; Luo, W.; Liu, Q.; Zou, R. J. Construction of ultrathin layered MXene-TiN heterostructure enabling favorable catalytic ability for high-areal-capacity lithium-sulfur batteries. Nano-Micro Lett. 2022, 14, 189.

[91]

Meng, R. J.; Deng, Q. Y.; Peng, C. X.; Chen, B. J.; Liao, K. X.; Li, L. J.; Yang, Z. Y.; Yang, D. L.; Zheng, L.; Zhang, C. et al. Two-dimensional organic-inorganic heterostructures of in situ-grown layered COF on Ti3C2 MXene nanosheets for lithium-sulfur batteries. Nano Today 2020, 35, 100991.

[92]

Li, P. Y.; Lv, H. W.; Li, Z. L.; Meng, X. P.; Lin, Z.; Wang, R. H.; Li, X. J. The electrostatic attraction and catalytic effect enabled by ionic-covalent organic nanosheets on MXene for separator modification of lithium-sulfur batteries. Adv. Mater. 2021, 33, 2007803.

[93]

Wen, C. Y.; Guo, D. H.; Zheng, X. Z.; Li, H. F.; Sun, G. B. Hierarchical nMOF-867/MXene nanocomposite for chemical adsorption of polysulfides in lithium-sulfur batteries. ACS Appl. Energy Mater. 2021, 4, 8231–8241.

[94]

Jiang, G. Y.; Zheng, N.; Chen, X.; Ding, G. Y.; Li, Y. H.; Sun, F. G.; Li, Y. S. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem. Eng. J. 2019, 373, 1309–1318.

[95]

Wang, J. T.; Zhao, T. K.; Yang, Z. H.; Chen, Y.; Liu, Y.; Wang, J. X.; Zhai, P. F.; Wu, W. J. MXene-based Co, N-codoped porous carbon nanosheets regulating polysulfides for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 38654–38662.

[96]

Zong, H.; Hu, L.; Wang, Z. G.; Qi, R. J.; Yu, K.; Zhu, Z. Q. Metal-organic frameworks-derived CoP anchored on MXene toward an efficient bifunctional electrode with enhanced lithium storage. Chem. Eng. J. 2021, 416, 129102.

[97]

Ye, Z. Q.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. J. Self-assembly of 0D-2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction. Adv. Mater. 2021, 33, 2101204.

[98]

Zhang, Y. Q.; Tang, W. W.; Zhan, R. M.; Liu, H.; Chen, H.; Yang, J. G.; Xu, M. W. An N-doped porous carbon/MXene composite as a sulfur host for lithium-sulfur batteries. Inorg. Chem. Front. 2019, 6, 2894–2899.

[99]

Wang, J. T.; Zhai, P. F.; Zhao, T. K.; Li, M. J.; Yang, Z. H.; Zhang, H. Q.; Huang, J. J. Laminar MXene-Nafion-modified separator with highly inhibited shuttle effect for long-life lithium-sulfur batteries. Electrochim. Acta 2019, 320, 134558.

[100]

Cao, Y. W.; Jia, Y. C.; Meng, X. D.; Fan, X. Y.; Zhang, J.; Zhou, J.; Matoga, D.; Bielawski, C. W.; Geng, J. X. Covalently grafting conjugated porous polymers to MXene offers a two-dimensional sandwich-structured electrocatalytic sulfur host for lithium-sulfur batteries. Chem. Eng. J. 2022, 446, 137365.

[101]

Zhang, D.; Wang, S.; Hu, R. M.; Gu, J. N.; Cui, Y. L. S.; Li, B.; Chen, W. H.; Liu, C. T.; Shang, J. X.; Yang, S. B. Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2002471.

[102]

Du, Z. G.; Wu, C.; Chen, Y. C.; Zhu, Q.; Cui, Y. L. S.; Wang, H. Y.; Zhang, Y. Z.; Chen, X.; Shang, J. X.; Li, B. et al. High-entropy carbonitride MAX phases and their derivative MXenes. Adv. Energy Mater. 2022, 12, 2103228.

[103]

Guo, X.; Zhang, H.; Yao, Y. Y.; Xiao, C. M.; Yan, X.; Chen, K.; Qi, J. W.; Zhou, Y. J.; Zhu, Z. G.; Sun, X. Y. et al. Derivatives of two-dimensional MXene-MOFs heterostructure for boosting peroxymonosulfate activation: Enhanced performance and synergistic mechanism. Appl. Catal. B: Environ. 2023, 323, 122136.

[104]

Yang, X.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G. L.; Cao, D. X.; Yan, J. 3D porous oxidation-resistant MXene/graphene architectures induced by in situ zinc template toward high-performance supercapacitors. Adv. Funct. Mater. 2021, 31, 2101087.

[105]

Xiao, Z. B.; Li, Z. L.; Meng, X. P.; Wang, R. H. MXene-engineered lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 22730–22743.

[106]

Qu, Y. H.; Zhang, Z. A.; Zhang, X. H.; Ren, G. D.; Lai, Y. Q.; Liu, Y. X.; Li, J. Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium-sulfur batteries. Carbon 2015, 84, 399–408.

[107]

Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem., Int. Ed. 2011, 50, 5904–5908.

[108]

Gueon, D.; Hwang, J. T.; Yang, S. B.; Cho, E.; Sohn, K.; Yang, D. K.; Moon, J. H. Spherical icroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes. ACS Nano 2018, 12, 226–233.

[109]

Li, X.; Cheng, X. B.; Gao, M. X.; Ren, D. W.; Liu, Y. F.; Guo, Z. X.; Shang, C. X.; Sun, L. X.; Pan, H. G. Amylose-derived macrohollow core and microporous shell carbon spheres as sulfur host for superior lithium-sulfur battery cathodes. ACS Appl. Mater. Interfaces 2017, 9, 10717–10729.

[110]

Zhang, Y. Z.; Wang, R. C.; Tang, W. Q.; Zhan, L.; Zhao, S. L.; Kang, Q.; Wang, Y. L.; Yang, S. B. Efficient polysulfide barrier of a graphene aerogel-carbon nanofibers-Ni network for high-energy-density lithium-sulfur batteries with ultrahigh sulfur content. J. Mater. Chem. A 2018, 6, 20926–20938.

[111]

Zhang, Y. Z.; Xu, G. X.; Kang, Q.; Zhan, L.; Tang, W. Q.; Yu, Y. X.; Shen, K. L.; Wang, H. C.; Chu, X.; Wang, J. Y. et al. Synergistic electrocatalysis of polysulfides by a nanostructured VS4-carbon nanofiber functional separator for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 16812–16820.

[112]

Zhang, J.; Jia, L. J.; Lin, H. Z.; Wang, J. Advances and prospects of 2D graphene-based materials/hybrids for lithium metal-sulfur full battery: From intrinsic property to catalysis modification. Adv. Energy Sustainability Res. 2022, 3, 2100187.

[113]

Zhu, J. X.; Tang, C. J.; Zhuang, Z. C.; Shi, C. W.; Li, N. R.; Zhou, L.; Mai, L. Q. Porous and low-crystalline manganese silicate hollow spheres wired by graphene oxide for high-performance lithium and sodium storage. ACS Appl. Mater. Interfaces 2017, 9, 24584–24590.

[114]

Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682.

[115]

Deville, S. Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 2008, 10, 155–169.

[116]

Tang, H.; Li, W. L.; Pan, L. M.; Cullen, C. P.; Liu, Y.; Pakdel, A.; Long, D. H.; Yang, J.; Mcevoy, N.; Duesberg, G. S. et al. In situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries. Adv. Sci. 2018, 5, 1800502.

[117]

Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

[118]

Liu, T. F.; Hu, H. L.; Ding, X. F.; Yuan, H. D.; Jin, C. B.; Nai, J. W.; Liu, Y. J.; Wang, Y.; Wan, Y. H.; Tao, X. Y. 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020). Energy Storage Mater. 2020, 30, 346–366.

[119]

Song, Y. Z.; Zhao, W.; Kong, L.; Zhang, L.; Zhu, X. Y.; Shao, Y. L.; Ding, F.; Zhang, Q.; Sun, J. Y.; Liu, Z. F. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries. Energy Environ. Sci. 2018, 11, 2620–2630.

[120]

Wu, C. Z.; Feng, F.; Xie, Y. Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem. Soc. Rev. 2013, 42, 5157–5183.

[121]

Qazilbash, M. M.; Brehm, M.; Chae, B. G.; Ho, P. C.; Andreev, G. Q.; Kim, B. J.; Yun, S. J.; Balatsky, A. V.; Maple, M. B.; Keilmann, F. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 2007, 318, 1750–1753.

[122]

Qu, Y. J.; Shao, M. M.; Shao, Y. F.; Yang, M. Y.; Xu, J. C.; Kwok, C. T.; Shi, X. Q.; Lu, Z. G.; Pan, H. Ultra-high electrocatalytic activity of VS2 nanoflowers for efficient hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 15080–15086.

[123]

Ma, X. F.; Yin, L.; Zou, J. J.; Mi, W. B.; Wang, X. C. Strain-tailored valley polarization and magnetic anisotropy in two-dimensional 2H-VS2/Cr2C heterostructures. J. Phys. Chem. C. 2019, 123, 17440–17448.

[124]

Salavati, M.; Rabczuk, T. Application of highly stretchable and conductive two-dimensional 1T VS2 and Vse2 as anode materials for Li-, Na- and Ca-ion storage. Comput. Mater. Sci. 2019, 160, 360–367.

[125]

Li, M. Y.; Yang, D. W.; Biendicho, J. J.; Han, X.; Zhang, C. Q.; Liu, K.; Diao, J. F.; Li, J. S.; Wang, J.; Heggen, M. et al. Enhanced polysulfide conversion with highly conductive and electrocatalytic iodine-doped bismuth selenide nanosheets in lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2200529.

[126]

Zhang, C. Q.; Biendicho, J. J.; Zhang, T.; Du, R. F.; Li, J. S.; Yang, X. H.; Arbiol, J.; Zhou, Y. T.; Morante, J. R.; Cabot, A. Combined high catalytic activity and efficient polar tubular nanostructure in urchin-like metallic NiCo2Se4 for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1903842.

[127]

Wang, J. L.; Du, R.; Yu, C. B.; Xu, C. Y.; Shi, Z. Y. Application of transition metal compounds in cathode materials for lithium-sulfur battery. Ionics 2022, 28, 5275–5288.

[128]

Chen, Q.; Gong, Y. J. Applications and challenges of 2D materials in lithium metal batteries. Mater. Lab 2022, 1, 220034.

[129]

Wang, M. X.; Fan, L. S.; Sun, X.; Guan, B.; Jiang, B.; Wu, X.; Tian, D.; Sun, K. N.; Qiu, Y.; Yin, X. J. et al. Nitrogen-doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li-S battery. ACS Energy Lett. 2020, 5, 3041–3050.

[130]

Ganesan, V.; Nam, K. H.; Park, C. M. Robust polyhedral CoTe2-C nanocomposites as high-performance Li- and Na-Ion battery anodes. ACS Appl. Energy Mater. 2020, 3, 4877–4887.

[131]

Chen, Z. L.; Chen, M.; Yan, X. X.; Jia, H. X.; Fei, B.; Ha, Y.; Qing, H. L.; Yang, H. Y.; Liu, M.; Wu, R. B. Vacancy occupation-driven polymorphic transformation in cobalt ditelluride for boosted oxygen evolution reaction. ACS Nano 2020, 14, 6968–6979.

[132]

Wang, H. X.; Wang, Y. W.; Tan, L. X.; Fang, L.; Yang, X. H.; Huang, Z. Y.; Li, J.; Zhang, H. J.; Wang, Y. Component-controllable cobalt telluride nanoparticles encapsulated in nitrogen-doped carbon frameworks for efficient hydrogen evolution in alkaline conditions. Appl. Catal. B: Environ. 2019, 244, 568–575.

[133]

Liang, Y.; Xia, T.; Chang, Z. S.; Xie, W. Y.; Li, Y. P.; Li, C. K.; Fan, R. M.; Wang, W. X.; Sui, Z. Y.; Chen, Q. Boric acid functionalized triazine-based covalent organic frameworks with dual-function for selective adsorption and lithium-sulfur battery cathode. Chem. Eng. J. 2022, 437, 135314.

[134]

Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.

[135]

Yang, Z. Y.; Peng, C. X.; Meng, R. J.; Zu, L. H.; Feng, Y. T.; Chen, B. J.; Mi, Y. L.; Zhang, C.; Yang, J. H. Hybrid anatase/rutile nanodots-embedded covalent organic frameworks with complementary polysulfide adsorption for high-performance lithium-sulfur batteries. ACS Cent. Sci. 2019, 5, 1876–1883.

[136]

Zhang, X. H.; Dong, P. P.; Song, M. K. Metal-organic frameworks for high-energy lithium batteries with enhanced safety: Recent progress and future perspectives. Batteries Supercaps 2019, 2, 591–626.

[137]

Hong, X. J.; Tang, X. Y.; Wei, Q.; Song, C. L.; Wang, S. Y.; Dong, R. F.; Cai, Y. P.; Si, L. P. Efficient encapsulation of small S2-4 molecules in MOF-derived flowerlike nitrogen-doped microporous carbon nanosheets for high-performance Li-S batteries. ACS Appl. Mater. Interfaces 2018, 10, 9435–9443.

[138]

He, Y. B.; Chang, Z.; Wu, S. C.; Qiao, Y.; Bai, S. Y.; Jiang, K. Z.; He, P.; Zhou, H. S. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries. Adv. Energy Mater. 2018, 8, 1802130.

[139]

Xu, J.; Zhang, H.; Yu, F. T.; Cao, Y. J.; Liao, M. C.; Dong, X. L.; Wang, Y. G. Realizing all-climate Li-S batteries by using a porous sub-nano aromatic framework. Angew. Chem., Int. Ed. 2022, 61, e202211933.

[140]

Cui, Y. L. S.; Cao, Z. J.; Zhang, Y. Z.; Chen, H.; Gu, J. N.; Du, Z. G.; Shi, Y. Z.; Li, B.; Yang, S. B. Single-atom sites on MXenes for energy conversion and storage. Small Sci. 2021, 1, 2100017.

[141]

Han, Z. Y.; Zhao, S. Y.; Xiao, J. W.; Zhong, X. W.; Sheng, J. Z.; Lv, W.; Zhang, Q. F.; Zhou, G. M.; Cheng, H. M. Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S Batteries. Adv. Mater. 2021, 33, 2105947.

[142]

Zhang, S. L.; Ao, X.; Huang, J.; Wei, B.; Zhai, Y. L.; Zhai, D.; Deng, W. Q.; Su, C. L.; Wang, D. S.; Li, Y. D. Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021, 21, 9691–9698.

[143]

Jin, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.

[144]

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

[145]

Li, H.; Yu, B.; Zhuang, Z. C.; Sun, W. P.; Jia, B. H.; Ma, T. Y. A small change in the local atomic environment for a big improvement in single-atom catalysis. J. Mater. Chem. A 2021, 9, 4184–4192.

[146]

Wei, C. L.; Tao, Y.; An, Y. L.; Tian, Y.; Zhang, Y. C.; Feng, J. K.; Qian, Y. T. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv. Funct. Mater. 2020, 30, 2004613.

[147]

Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

[148]

Tao, T.; Lu, S. G.; Fan, Y.; Lei, W. W.; Huang, S. M.; Chen, Y. Anode improvement in rechargeable lithium-sulfur batteries. Adv. Mater. 2017, 29, 1700542.

[149]

Lu, W.; Wang, Zhao.; Sun, G. R.; Zhang, S. M.; Cong, L. N.; Lin, L.; Chen, S. R.; Liu, J.; Xie, H. M.; Liu, Y. L. Anchoring polysulfide with artificial solid electrolyte interphase for dendrite-free and low N/P ratio Li-S batteries. J. Energy Chem. 2023, 80, 32–39.

[150]

Cao, Z. J.; Zhang, Y. Z.; Cui, Y. L. S.; Li, B.; Yang, S. B. Harnessing the unique features of MXenes for sulfur cathodes. Tungsten 2020, 2, 162–175.

[151]

Shen, K.; Cao, Z. J.; Shi, Y. Z.; Zhang, Y. Z.; Li, B.; Yang, S. B. 3D printing lithium salt towards dendrite-free lithium anodes. Energy Storage Mater. 2021, 35, 108–113.

[152]

Zhang, X. Y.; Lv, R. J.; Wang, A. X.; Guo, W. Q.; Liu, X. J.; Luo, J. Y. MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem., Int. Ed. 2018, 57, 15028–15033.

[153]

Wang, C. Y.; Zheng, Z. J.; Feng, Y. Q.; Ye, H.; Cao, F. F.; Guo, Z. P. Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy 2020, 74, 104817.

[154]

Li, B.; Zhang, D.; Liu, Y.; Yu, Y. X.; Li, S. M.; Yang, S. B. Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes. Nano Energy 2017, 39, 654–661.

[155]
Kang, Q.; Zhuang, Z. C.; Li, Yong.; Zuo, Y. Z.; Wang, J.; Liu, Y. J.; Shi, C. Q.; Chen, J.; Li, H. F.; Jiang, P. K. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res., in press, https://doi.org/10.1007/s12274-023-5478-4.
[156]

Cao, Z. J.; Zhu, Q.; Wang, S.; Zhang, D.; Chen, H.; Du, Z. G.; Li, B.; Yang, S. B. Perpendicular MXene arrays with periodic interspaces toward dendrite-free lithium metal anodes with high-rate capabilities. Adv. Funct. Mater. 2020, 30, 1908075.

[157]

Shi, H. D.; Zhang, C. J.; Lu, P. F.; Dong, Y. F.; Wen, P. C.; Wu, Z. S. Conducting and lithiophilic MXene/graphene framework for high-capacity, dendrite-free lithium-metal anodes. ACS Nano 2019, 13, 14308–14318.

[158]

Li, W. T.; Zhang, Y. F.; Li, H.; Chen, Z. J.; Shang, T. X.; Wu, Z. T.; Zhang, C.; Li, J.; Lv, W.; Tao, Y. et al. Layered MXene protected lithium metal anode as an efficient polysulfide blocker for lithium-sulfur batteries. Batteries Supercaps 2020, 3, 892–899.

[159]

Zhao, F. F.; Zhai, P. B.; Wei, Y.; Yang, Z. L.; Chen, Q.; Zuo, J. H.; Gu, X. K.; Gong, Y. J. Constructing artificial SEI layer on lithiophilic MXene surface for high-performance lithium metal anodes. Adv. Sci. 2022, 9, 2103930.

[160]

Guo, D.; Ming, F. W.; Shinde, D. B.; Cao, L.; Huang, G.; Li, C. Y.; Li, Z.; Yuan, Y. Y.; Hedhili, M. N.; Alshareef, H. N. et al. Covalent assembly of two-dimensional COF-on-MXene heterostructures enables fast charging lithium hosts. Adv. Funct. Mater. 2021, 31, 2101194.

[161]

Wei, C. L.; Wang, Y. S.; Zhang, Y. C.; Tan, L. W.; Qian, Y.; Tao, Y.; Xiong, S. L.; Feng, J. K. Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 3576–3584.

[162]

Yang, T. Z.; Qian, T.; Shen, X. W.; Wang, M. F.; Liu, S. S.; Zhong, J.; Yan, C. L.; Rosei, F. Single-cluster Au as an usher for deeply cyclable Li metal anodes. J. Mater. Chem. A 2019, 7, 14496–14503.

[163]

Yang, C. P.; Yao, Y. G.; He, S. M.; Xie, H.; Hitz, E.; Hu, L. B. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv. Mater. 2017, 29, 1702714.

[164]

Yan, K.; Lu, Z. D.; Lee, H. W.; Xiong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010.

[165]

Sun, Y. W.; Zhou, J. Q.; Ji, H. Q.; Liu, J.; Qian, T.; Yan, C. L. Single-atom iron as lithiophilic site to minimize lithium nucleation overpotential for stable lithium metal full battery. ACS Appl. Mater. Interfaces 2019, 11, 32008–32014.

[166]

Liu, H.; Chen, X.; Cheng, X. B.; Li, B. Q.; Zhang, R.; Wang, B.; Chen, X.; Zhang, Q. Uniform lithium nucleation guided by atomically dispersed lithiophilic CoNx sites for safe lithium metal batteries. Small Methods 2019, 3, 1800354.

[167]

Wang, J.; Jia, L. J.; Lin, H. Z.; Zhang, Y. G. Single-atomic catalysts embedded on nanocarbon supports for high energy density lithium-sulfur batteries. ChemSusChem 2020, 13, 3404–3411.

[168]

Gu, J. N.; Zhu, Q.; Shi, Y. Z.; Chen, H.; Zhang, D.; Du, Z. G.; Yang, S. B. Single zinc atoms immobilized on MXene (Ti3C2Clx) layers toward dendrite-free lithium metal anodes. ACS Nano 2020, 14, 891–898.

[169]

Du, Z. G.; Wu, C.; Chen, Y. C.; Cao, Z. J.; Hu, R. M.; Zhang, Y. Z.; Gu, J. N.; Cui, Y. L. S.; Chen, H.; Shi, Y. Z. et al. High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater. 2021, 33, 2101473.

Nano Research
Pages 9158-9178
Cite this article:
Wu S, Li X, Zhang Y, et al. Interface engineering of MXene-based heterostructures for lithium-sulfur batteries. Nano Research, 2023, 16(7): 9158-9178. https://doi.org/10.1007/s12274-023-5532-2
Topics:

1903

Views

30

Crossref

32

Web of Science

32

Scopus

1

CSCD

Altmetrics

Received: 30 December 2022
Revised: 18 January 2023
Accepted: 29 January 2023
Published: 25 May 2023
© Tsinghua University Press 2023
Return