AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Cobalt disulfide/carbon nanofibers with mesoporous heterostructure and excellent hydrophilicity for high energy density asymmetric supercapacitor

Wenjie Liu1Fen Qiao1( )Jing Yang1Jiaren Yuan3Yi Xie4Tao Wang5Jinzhi Hu1Jihua Zheng1Rui Ren2Xiaomin Kang2Yan Zhao2( )Jiangwei Zhang2( )
School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, China
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
Key Laboratory of Power Station Energy Transfer Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China
Show Author Information

Graphical Abstract

A series of mesoporous heterostructure cobalt disulfide/carbon nanofibers (CoS2/PCNFs) composites with excellent hydrophilicity are prepared by using polyethylene glycol (PEG) as a pore-forming agent. Benefiting from a large number of mesoporous PCNFs, the composite exhibits excellent hydrophilicity and high specific surface area. In addition, the CoS2 nanoparticles embedded on PCNF provide a large number of active sites and high Faradaic capacity contribution for the composite. The optimal electrode exhibits a high specific capacity (86.1 mAh·g−1 at 1 A·g−1). Moreover, a hybrid supercapacitor delivers a high energy density of 35.5 Wh·kg−1@824 W·kg−1, which is superior to that of some hybrid supercapacitor devices based on CNF and cobalt sulfide reported in literature. The controllable fabrication process of CNF-based composites with mesoporous-rich structure provides novel insights into surface modification of electrospinning carbon nanofibers.

Abstract

Herein, a unique mesoporous heterostructure (average pore size: 15 nm) cobalt disulfide/carbon nanofibers (CoS2/PCNFs) composite with excellent hydrophilicity (contact angle: 23.5°) is prepared using polyethylene glycol (PEG) as a pore-forming agent. The CoS2/PCNF electrode exhibits excellent cycle stability (95.2% of initial specific capacitance at 10 A∙g−1 after 8000 cycles), good rate performance (46.5% at 10 A∙g−1), and high specific capacity (86.1 mAh∙g−1 at 1 A∙g−1, about 688.8 F∙g−1 at 1 A∙g−1). Density functional theory (DFT) simulation elucidates that CoS2 tends to transfer substantial charges to CNF. As the center of positive charge, CoS2 is more likely to capture negative ions in the electrolyte, thus accelerating the ion diffusion process. The excellent properties of the electrode material can not only accelerate the electrochemical reaction kinetics, but also provide abundant redox-active sites and a high Faradaic capacity for the entire electrode due to the synergistic contributions of CoS2 nanoparticles, mesoporous heterostructure of PCNF, and admirable hydrophilicity of the composite material. A CoS2/PCNF-0.25//AC (AC: activated carbon) asymmetric supercapacitor is assembled using CoS2/PCNF-0.25 as the positive electrode and AC as the negative electrode, which possesses a high energy density (35.5 Wh∙kg−1 at a power density of 824 W∙kg−1) and superior cycling stability (maintaining over 98% of initial capacitance after 2000 cycles). In addition, the unique CoS2/PCNF electrode is expected to be widely used in other electrochemical energy storage devices, such as lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, etc.

Electronic Supplementary Material

Download File(s)
12274_2023_5533_MOESM1_ESM.pdf (1.5 MB)

References

[1]

Wang, W. Q.; Xiao, Y.; Li, X. W.; Cheng, Q. L.; Wang, G. C. Bismuth oxide self-standing anodes with concomitant carbon dots welded graphene layer for enhanced performance supercapacitor-battery hybrid devices. Chem. Eng. J. 2019, 371, 327–336.

[2]

Ye, F.; Zhang, L.; Lu, C. J.; Bao, Z. H.; Wu, Z. Y.; Liu, Q.; Shao, Z. P.; Hu, L. F. Realizing interfacial electron/hole redistribution and superhydrophilic surface through building heterostructural 2 nm Co0.85Se-NiSe nanograins for efficient overall water splittings. Small Methods 2022, 6, 2200459.

[3]

Yang, P. Y.; Wu, Z. Y.; Jiang, Y. C.; Pan, Z. C.; Tian, W. C.; Jiang, L.; Hu, L. F. Fractal (NixCo1−x)9Se8 nanodendrite arrays with highly exposed ( 011¯) surface for wearable, all-solid-state supercapacitor. Adv. Energy Mater. 2018, 8, 1801392.

[4]

Kumar, K. S.; Choudhary, N.; Jung, Y.; Thomas, J. Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications. ACS Energy Lett. 2018, 3, 482–495.

[5]

Liu, Y.; Wang, W. Q.; Chen, J.; Li, X. W.; Cheng, Q. L.; Wang, G. C. Fabrication of porous lithium titanate self-supporting anode for high performance lithium-ion capacitor. J. Energy Chem. 2020, 50, 344–350.

[6]

Zhao, Y.; Wang, S. C.; Ye, F.; Liu, W. J.; Lian, J. B.; Li, G. C.; Wang, H. T.; Hu, L. F.; Wu, L. M. Hierarchical mesoporous selenium@bimetallic selenide quadrilateral nanosheet arrays for advanced flexible asymmetric supercapacitors. J. Mater. Chem. A 2022, 10, 16212–16223.

[7]

Pan, Z. C.; Jiang, Y. C.; Yang, P. Y.; Wu, Z. Y.; Tian, W. C.; Liu, L.; Song, Y.; Gu, Q. F.; Sun, D. L.; Hu, L. F. In situ growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor. ACS Nano 2018, 12, 2968–2979.

[8]

Xu, D. M.; Wang, H. W.; Qiu, R. Y.; Wang, Q.; Mao, Z. F.; Jiang, Y. J.; Wang, R.; He, B. B.; Gong, Y. S.; Li, D. B. et al. Coupling of bowl-like VS2 nanosheet arrays and carbon nanofiber enables ultrafast Na+-storage and robust flexibility for sodium-ion hybrid capacitors. Energy Storage Mater. 2020, 28, 91–100.

[9]

Zhao, Y.; Wang, Y. Q.; Huang, Y. P.; Liu, W. J.; Hu, J. Z.; Zheng, J. H.; Wu, L. M. Nickel carbonate hydroxide-based core-triple-shelled nanofibers with ultrahigh specific capacity for flexible hybrid supercapacitors. J. Colloid Interface Sci. 2023, 630, 444–451.

[10]

Khumujam, D. D.; Kshetri, T.; Singh, T. I.; Kim, N. H.; Lee, J. H. Fibrous asymmetric supercapacitor based on wet spun MXene/PAN fiber-derived multichannel porous MXene/CF negatrode and NiCo2S4 electrodeposited MXene/CF positrode. Chem. Eng. J. 2022, 449, 137732.

[11]

Chen, L. M.; Abdalkarim, S. Y. H.; Yu, H. Y.; Chen, X.; Tang, D. P.; Li, Y. Z.; Tam, K. C. Nanocellulose-based functional materials for advanced energy and sensor applications. Nano Res. 2022, 15, 7432–7452.

[12]

Liu, Y. P.; Wang, D.; Zhang, C.; Zhao, Y.; Ma, P. M.; Dong, W. F.; Huang, Y. P.; Liu, T. X.; Zhang, C.; Zhao, Y. Compressible and lightweight MXene/carbon nanofiber aerogel with “layer-strut” bracing microscopic architecture for efficient energy storage. Adv. Fiber Mater. 2022, 4, 820–831.

[13]

Lu, X. F.; Wang, C.; Favier, F.; Pinna, N. Electrospun nanomaterials for supercapacitor electrodes: Designed architectures and electrochemical performance. Adv. Energy Mater. 2017, 7, 1601301.

[14]

Peng, S. J.; Li, L. L.; Lee, J. K. Y.; Tian, L. L.; Srinivasan, M.; Adams, S.; Ramakrishna, S. Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage. Nano Energy 2016, 22, 361–395.

[15]

Ren, J. C.; Meng, Q.; Xu, Z. Y.; Zhang, X. H.; Chen, J. H. CoS2 hollow nanocubes derived from Co-Co Prussian blue analogue: High-performance electrode materials for supercapacitors. J. Electroanal. Chem. 2019, 836, 30–37.

[16]

Yang, Q. J.; Liu, Y.; Xiao, L. S.; Yan, M.; Bai, H. Y.; Zhu, F. F.; Lei, Y.; Shi, W. D. Self-templated transformation of MOFs into layered double hydroxide nanoarrays with selectively formed Co9S8 for high-performance asymmetric supercapacitors. Chem. Eng. J. 2018, 354, 716–726.

[17]

Wang, Z.; Liu, C.; Shi, G. F.; Ma, H.; Jiang, X.; Zhang, Q.; Zhang, H. Q.; Su, Y.; Yu, J. L.; Jia, S. M. Preparation and electrochemical properties of CoS2/carbon nanofiber composites. Ionics 2019, 25, 5035–5043.

[18]

Yan, R. Y.; Josef, E.; Huang, H. J.; Leus, K.; Niederberger, M.; Hofmann, J. P.; Walczak, R.; Antonietti, M.; Oschatz, M. Understanding the charge storage mechanism to achieve high capacity and fast ion storage in sodium-ion capacitor anodes by using electrospun nitrogen-doped carbon fibers. Adv. Funct Mater. 2019, 29, 1902858.

[19]

Yang, Y.; Liu, Y. X.; Li, Y.; Deng, B. W.; Yin, B.; Yang, M. B. Design of compressible and elastic N-doped porous carbon nanofiber aerogels as binder-free supercapacitor electrodes. J. Mater. Chem. A 2020, 8, 17257–17265.

[20]

Amiri, A.; Conlee, B.; Tallerine, I.; Kennedy, W. J.; Naraghi, M. A novel path towards synthesis of nitrogen-rich porous carbon nanofibers for high performance supercapacitors. Chem. Eng. J. 2020, 399, 125788.

[21]

Lee, D.; Jung, J. Y.; Jung, M. J.; Lee, Y. S. Hierarchical porous carbon fibers prepared using a SiO2 template for high-performance EDLCs. Chem. Eng. J. 2015, 263, 62–70.

[22]

Ren, Q. J.; Shi, Z. Q.; Yan, L.; Zhang, F. M.; Fan, L. L.; Zhang, L. J.; Lv, W. J. High-performance sodium-ion storage: Multi-channel carbon nanofiber freestanding anode contrived via ingenious solvent-induced phase separation. J. Mater. Chem. A 2020, 8, 19898–19907.

[23]

Yue, L. C.; Zhao, H. T.; Wu, Z. G.; Liang, J.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Zhong, B. H.; Guo, X. D.; Sun, X. P. Recent advances in electrospun one-dimensional carbon nanofiber structures/heterostructures as anode materials for sodium ion batteries. J. Mater. Chem. A 2020, 8, 11493–11510.

[24]

Wang, Y. Y.; Li, Z. G.; Zhang, P.; Pan, Y.; Zhang, Y.; Cai, Q.; Silva, S. R. P.; Liu, J.; Zhang, G. X.; Sun, X. M. et al. Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reduction and evolution reactions in wearable zinc-air batteries. Nano Energy 2021, 87, 106147.

[25]

Yoon, K. R.; Shin, K.; Park, J.; Cho, S. H.; Kim, C.; Jung, J. W.; Cheong, J. Y.; Byon, H. R.; Lee, H. M.; Kim, I. D. Brush-like cobalt nitride anchored carbon nanofiber membrane: Current collector-catalyst integrated cathode for long cycle Li-O2 batteries. ACS Nano 2018, 12, 128–139.

[26]

Qiao, F.; Liu, W. J.; Wang, S. Z.; Lin, F. J.; Chen, Y.; Yuan, M.; Weng, Z. K.; Wang, S. C.; Zheng, J. H.; Zhao, Y. Hierarchical Co3S4/CoS/MoS2 leaf-like nanoflakes array derived from Co-ZIF-L as an advanced anode for flexible supercapacitor. J. Alloys Compd. 2021, 870, 159393.

[27]

Tang, R.; Taguchi, K.; Nishihara, H.; Ishii, T.; Morallón, E.; Cazorla-Amorós, D.; Asada, T.; Kobayashi, N.; Muramatsu, Y.; Kyotani, T. Insight into the origin of carbon corrosion in positive electrodes of supercapacitors. J. Mater. Chem. A 2019, 7, 7480–7488.

[28]

Wang, H. M.; Wang, C. Y.; Jian, M. Q.; Wang, Q.; Xia, K. L.; Yin, Z.; Zhang, M. C.; Liang, X. P.; Zhang, Y. Y. Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber. Nano Res. 2018, 11, 2347–2356.

[29]

Rong, Y. X.; Chen, Y.; Zheng, J. H.; Zhao, Y.; Li, Q. P. Development of high performance alpha-Co(OH)2/reduced graphene oxide microfilm for flexible in-sandwich and planar micro-supercapacitors. J. Colloid Interface Sci. 2021, 598, 1–13.

[30]

Zhao, Y.; Wang, S. C.; Yuan, M.; Chen, Y.; Huang, Y. P.; Lian, J. B.; Yang, S. L.; Li, H. M.; Wu, L. M. Amorphous MoSx nanoparticles grown on cobalt-iron-based needle-like array for high-performance flexible asymmetric supercapacitor. Chem. Eng. J. 2021, 417, 127927.

[31]

Chen, W. Y.; Wei, T. T.; Mo, L. E.; Wu, S. G.; Li, Z. Q.; Chen, S. H.; Zhang, X. X.; Hu, L. H. CoS2 nanosheets on carbon cloth for flexible all-solid-state supercapacitors. Chem. Eng. J. 2020, 400, 125856.

[32]

Liu, S. D.; Gao, D. Q.; Li, J. F.; Hui, K. S.; Yin, Y.; Hui, K. N.; Jun, S. C. Phosphorus dual-site driven CoS2@S, N co-doped porous carbon nanosheets for flexible quasi-solid-state supercapacitors. J. Mater. Chem. A 2019, 7, 26618–26630.

[33]

Liu, W. J.; Zhao, Y.; Zheng, J. H.; Jin, D. Y.; Wang, Y. Q.; Lian, J. B.; Yang, S. L.; Li, G. C.; Bu, Y. F.; Qiao, F. Heterogeneous cobalt polysulfide leaf-like array/carbon nanofiber composites derived from zeolite imidazole framework for advanced asymmetric supercapacitors. J. Colloid Interface Sci. 2022, 606, 728–735.

[34]

Li, B. Y.; Xing, R. M.; Mohite, S. V.; Latthe, S. S.; Fujishima, A.; Liu, S. H.; Zhou, Y. M. CoS2 nanodots anchored into heteroatom-doped carbon layer via a biomimetic strategy: Boosting the oxygen evolution and supercapacitor performance. J. Power Sources 2019, 436, 226862.

[35]

Jiang, X. L.; Zhang, S.; Zou, B. B.; Li, G. C.; Yang, S. L.; Zhao, Y.; Lian, J. B.; Li, H. M.; Ji, H. B. Electrospun CoSe@NC nanofiber membrane as an effective polysulfides adsorption-catalysis interlayer for Li-S batteries. Chem. Eng. J. 2022, 430, 131911.

[36]

Xu, T.; Zhang, Z. P.; Qu, L. T. Graphene-based fibers: Recent advances in preparation and application. Adv. Mater. 2020, 32, 1901979.

[37]

Ma, X. Q.; Shan, Y. Q.; Wang, M. Y.; Alothman, Z. A.; Xu, Z. X.; Duan, P. G.; Zhou, J.; Luque, R. Mechanochemical preparation of N, S-doped graphene oxide using (NH4)2SO4 for supercapacitor applications. ACS Sustainable Chem. Eng. 2020, 8, 18810–18815.

[38]

Liu, C.; Zhao, G. Y.; Zhang, L.; Lyu, P. B.; Yu, X. B.; Huang, H. H.; Maurin, G.; Sun, K. N.; Zhang, N. Q. Self-supported PPy-encapsulated CoS2 nanosheets anchored on the TiO2−x nanorod array support by Ti–S bonds for ultra-long life hybrid Mg2+/Li+ batteries. J. Mater. Chem. A 2020, 8, 22712–22719.

[39]

Jayaramulu, K.; Dubal, D. P.; Nagar, B.; Ranc, V.; Tomanec, O.; Petr, M.; Datta, K. K. R.; Zboril, R.; Gómez-Romero, P.; Fischer, R. A. Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage. Adv. Mater. 2018, 30, 1705789.

[40]

Sevilla, M.; Diez, N.; Ferrero, G. A.; Fuertes, A. B. Sustainable supercapacitor electrodes produced by the activation of biomass with sodium thiosulfate. Energy Storage Mater. 2019, 18, 356–365.

[41]

Jia, H. N.; Wang, Z. Y.; Zheng, X. H.; Cai, Y. F.; Lin, J. H.; Liang, H. Y.; Qi, J. L.; Cao, J.; Feng, J. C.; Fei, W. D. Controlled synthesis of MOF-derived quadruple-shelled CoS2 hollow dodecahedrons as enhanced electrodes for supercapacitors. Electrochim. Acta 2019, 312, 54–61.

[42]

Nie, G. D.; Zhang, Z. Y.; Liu, Y. Q.; Wang, J.; Fu, C.; Yin, H. Q.; Chen, J.; Zhao, L.; Pan, Z. H. One-pot rational deposition of coaxial double-layer MnO2/Ni(OH)2 nanosheets on carbon nanofibers for high-performance supercapacitors. Adv. Fiber Mater. 2022, 4, 1129–1140.

[43]

Wei, S.; Wan, C. C.; Zhang, L. Y.; Liu, X. Y.; Tian, W. Y.; Su, J. H.; Cheng, W. J.; Wu, Y. Q. N-doped and oxygen vacancy-rich NiCo2O4 nanograss for supercapacitor electrode. Chem. Eng. J. 2022, 429, 132242.

[44]

Bahmani, F.; Kazemi, S. H.; Wu, Y. H.; Liu, L.; Xu, Y.; Lei, Y. CuMnO2-reduced graphene oxide nanocomposite as a free-standing electrode for high-performance supercapacitors. Chem. Eng. J. 2019, 375, 121966.

[45]

Zhou, M.; Yan, S. X.; Wang, Q.; Tan, M. X.; Wang, D. Y.; Yu, Z. Q.; Luo, S. H.; Zhang, Y. H.; Liu, X. Walnut septum-derived hierarchical porous carbon for ultra-high-performance supercapacitors. Rare Met. 2022, 41, 2280–2291.

[46]

Ning, W. W.; Chen, L. B.; Wei, W. F.; Chen, Y. J.; Zhang, X. Y. NiCoO2/NiCoP@Ni nanowire arrays: Tunable composition and unique structure design for high-performance winding asymmetric hybrid supercapacitors. Rare Met. 2020, 39, 1034–1044.

[47]

Zhao, Y.; Hu, L. F.; Zhao, S. Y.; Wu, L. M. Preparation of MnCo2O4@Ni(OH)2 core–shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance. Adv. Funct Mater. 2016, 26, 4085–4093.

[48]

Zhao, Y.; Zheng, J. H.; Yuan, M.; Wang, Y. Q.; Liu, W. J.; Yang, S. L.; Li, G. C.; Lian, J. B.; Bu, Y. F. Boosting the energy density of iron-cobalt oxide based hybrid supercapacitors by redox-additive electrolytes. J. Alloys Compd. 2021, 885, 160886.

[49]

Lei, K. Z.; Ling, J. Z.; Zhou, J. C.; Zou, H. B.; Yang, W.; Chen, S. Z. Formation of CoS2/N, S-codoped porous carbon nanotube composites based on bimetallic zeolitic imidazolate organic frameworks for supercapacitors. Mater. Res. Bull. 2019, 116, 59–66.

[50]

Liu, H.; Hu, R.; Qi, J. Q.; Sui, Y. W.; He, Y. Z.; Meng, Q. K.; Wei, F. X.; Ren, Y. J.; Zhao, Y. L.; Wei, W. Q. One-step synthesis of nanostructured CoS2 grown on titanium carbide MXene for high-performance asymmetrical supercapacitors. Adv. Mater Interfaces 2020, 7, 1901659.

[51]

Zhang, N.; Wang, W. C.; Teng, C. Q.; Wu, Z. Z.; Ye, Z. R.; Zhi, M. J.; Hong, Z. L. Co9S8 nanoparticle-decorated carbon nanofibers as high-performance supercapacitor electrodes. RSC Adv. 2018, 8, 27574–27579.

[52]

Ma, Z. Q.; Sun, Z. Q.; Jiang, H.; Li, F. Z.; Wang, Q.; Qu, F. Y. Nanoporous electrospun NiCo2S4 embedded in carbon fiber as an excellent electrode for high-rate supercapacitors. Appl. Surf. Sci. 2020, 533, 147521.

[53]

Tiwari, A. P.; Chae, S. H.; Ojha, G. P.; Dahal, B.; Mukhiya, T.; Lee, M.; Chhetri, K.; Kim, T.; Kim, H. Y. Three-dimensional porous carbonaceous network with in situ entrapped metallic cobalt for supercapacitor application. J. Colloid Interface Sci. 2019, 553, 622–630.

[54]

Ghanashyam, G.; Jeong, H. K. Synthesis of nitrogen-doped plasma treated carbon nanofiber as an efficient electrode for symmetric supercapacitor. J. Energy Storage 2021, 33, 102150.

Nano Research
Pages 10401-10411
Cite this article:
Liu W, Qiao F, Yang J, et al. Cobalt disulfide/carbon nanofibers with mesoporous heterostructure and excellent hydrophilicity for high energy density asymmetric supercapacitor. Nano Research, 2023, 16(7): 10401-10411. https://doi.org/10.1007/s12274-023-5533-1
Topics:

967

Views

17

Crossref

18

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 30 November 2022
Revised: 19 January 2023
Accepted: 29 January 2023
Published: 02 March 2023
© Tsinghua University Press 2023
Return