Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The finite lithium-ion utilization, short cycling life, and lower capacity retention caused by irreversible dendrite growth become the maximum dilemma in lithium metal batteries’ (LMBs’) commercialization. Herein, a perfluoroalkyl-functionalized covalent organic framework (COF-F6) equipped with high stability and supernal proton conduction is introduced as an artificial solid electrolyte interface to stable the lithium metal anode. Benefiting from the strong electron-withdrawing effect of perfluoroalkyl, Li+ will be freed more by the competition of electronegative fluorine (F) and bis(trifluoromethanesulphonyl)imide anion (TFSI−). The dissociation of LiTFSI and process of Li+ desolvation are easier to achieve. In addition, high electronegative fluorine can also regulate local electron-cloud density to induce the fast immigration of Li+. All the above roles contribute to improving the Li+ transfer number (0.7) and achieving the goal of inhibiting Li dendrite. As a result, the perfluoroalkyl COF-F6 modified LMB presents outstanding cycling stability. The symmetric batteries accomplish an overlong life-span of more than 5000 h with a lower hysteresis voltage (11 mV) at 5 mA·cm−2. Also, no dendrites are observed when using an in-situ optical microscope to learn the process of Li deposition. Therefore, this dendrite-free protection tactic holds broad prospects for the practical application of Li metal anodes.
Ma, M. Y.; Shao, F.; Wen, P.; Chen, K. X.; Li, J. R.; Zhou, Y.; Liu, Y. L.; Jia, M. Y.; Chen, M.; Lin, X. R. Designing weakly solvating solid main-chain fluoropolymer electrolytes: Synergistically enhancing stability toward Li anodes and high-voltage cathodes. ACS Energy Lett. 2021, 6, 4255–4264.
Jia, M. Y.; Wen, P.; Wang, Z. T.; Zhao, Y. C.; Liu, Y. M.; Lin, J.; Chen, M.; Lin, X. R. Fluorinated bifunctional solid polymer electrolyte synthesized under visible light for stable lithium deposition and dendrite-free all-solid-state batteries. Adv. Funct. Mater. 2021, 31, 2101736.
He, F.; Tang, W. J.; Zhang, X. Y.; Deng, L. J.; Luo, J. Y. High energy density solid state lithium metal batteries enabled by sub-5 μm solid polymer electrolytes. Adv. Mater. 2021, 33, 2105329.
Xia, S. B.; Cai, Y. Q.; Yao, L. F.; Shi, J. Y.; Cheng, F. X.; Liu, J. J.; He, Z. J.; Zheng, J. C. Nitrogen-rich two-dimensional π-conjugated porous covalent quinazoline polymer for lithium storage. Energy Storage Mater. 2022, 50, 225–233.
Lou, S. F.; Zhang, F.; Fu, C. K.; Chen, M.; Ma, Y. L.; Yin, G. P.; Wang, J. J. Interface issues and challenges in all-solid-state batteries: Lithium, sodium, and beyond. Adv. Mater. 2021, 33, 2000721.
Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.
Chen, W.; Hu, Y.; Lv, W. Q.; Lei, T. Y.; Wang, X. F.; Li, Z. H.; Zhang, M.; Huang, J. W.; Du, X. C.; Yan, Y. C. et al. Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nat. Commun. 2019, 10, 4973.
Kim, H.; Jeong, G.; Kim, Y. U.; Kim, J. H.; Park, C. M.; Sohn, H. J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 2013, 42, 9011–9034.
Hou, Z.; Zhang, J. L.; Wang, W. H.; Chen, Q. W.; Li, B. H.; Li, C. L. Towards high-performance lithium metal anodes via the modification of solid electrolyte interphases. J. Energy Chem. 2020, 45, 7–17.
Li, Q.; Zhu, S. P.; Lu, Y. Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 2017, 27, 1606422.
Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.
Tang, L. B.; Yang, P.; Chen, Y. J.; Li, P. Y.; Peng, T.; Wei, H. X.; Wang, Z. Y.; He, Z. J.; Yan, C.; Mao, J. et al. Cation doping constructed vacancy engineering for designing Sn3Se5@PPy heterostructures toward lithium/sodium-ion batteries. J. Power Sources 2022, 552, 232210.
Ye, H.; Xin, S.; Yin, Y. X.; Li, J. Y.; Guo, Y. G.; Wan, L. J. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons. J. Am. Chem. Soc. 2017, 139, 5916–5922.
Liu, L.; Yin, Y. X.; Li, J. Y.; Wang, S. H.; Guo, Y. G.; Wan, L. J. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv. Mater. 2018, 30, 1706216.
Wang, H. S.; Yu, Z. A.; Kong, X.; Huang, W.; Zhang, Z. W.; Mackanic, D. G.; Huang, X. Y.; Qin, J.; Bao, Z. N.; Cui, Y. Dual-solvent Li-ion solvation enables high-performance Li-metal batteries. Adv. Mater. 2021, 33, 2008619.
Dong, L. W.; Liu, Y. P.; Wen, K. C.; Chen, D. J.; Rao, D. W.; Liu, J. P.; Yuan, B. T.; Dong, Y. F.; Wu, Z.; Liang, Y. F. et al. High-polarity fluoroalkyl ether electrolyte enables solvation-free Li+ transfer for high-rate lithium metal batteries. Adv. Sci. (Weinh.) 2022, 9, 2104699.
Wen, Y. C.; Ding, J. Y.; Yang, Y.; Lan, X. X.; Liu, J.; Hu, R. Z.; Zhu, M. Introducing NO3− into carbonate-based electrolytes via covalent organic framework to incubate stable interface for Li-metal batteries. Adv. Funct. Mater. 2022, 32, 2109377.
Jiang, Z. P.; Zeng, Z. Q.; Yang, C. K.; Han, Z. L.; Hu, W.; Lu, J.; Xie, J. Nitrofullerene, a C60-based bifunctional additive with smoothing and protecting effects for stable lithium metal anode. Nano Lett. 2019, 19, 8780–8786.
Zhou, P.; Xia, Y. C.; Hou, W. H.; Yan, S. S.; Zhou, H. Y.; Zhang, W. L.; Lu, Y.; Wang, P. C.; Liu, K. Rationally designed fluorinated amide additive enables the stable operation of lithium metal batteries by regulating the interfacial chemistry. Nano Lett. 2022, 22, 5936–5943.
Zhao, Q. N.; Wang, R. H.; Hu, X. L.; Wang, Y. M.; Lu, G. J.; Yang, Z. G.; Liu, Q. W.; Yang, X. K.; Pan, F. S.; Xu, C. H. Functionalized 12 μm polyethylene separator to realize dendrite-free lithium deposition toward highly stable lithium-metal batteries. Adv. Sci. (Weinh. ) 2022, 9, 2102215.
Li, Z. H.; Ji, W. Y.; Wang, T. X.; Zhang, Y. R.; Li, Z.; Ding, X. S.; Han, B. H.; Feng, W. Guiding uniformly distributed Li-ion flux by lithiophilic covalent organic framework interlayers for high-performance lithium metal anodes. ACS Appl. Mater. Interfaces 2021, 13, 22586–22596.
Zhao, J. C.; Yan, G. J.; Zhang, X. J.; Feng, Y.; Li, N. W.; Shi, J. J.; Qu, X. W. In situ interfacial polymerization of lithiophilic COF@PP and POP@PP separators with lower shuttle effect and higher ion transport for high-performance Li-S batteries. Chem. Eng. J. 2022, 442, 136352.
Cao, Y.; Liu, C.; Wang, M. D.; Yang, H.; Liu, S.; Wang, H. L.; Yang, Z. X.; Pan, F. S.; Jiang, Z. Y.; Sun, J. Lithiation of covalent organic framework nanosheets facilitating lithium-ion transport in lithium-sulfur batteries. Energy Storage Mater. 2020, 29, 207–215.
Li, Z. H.; Ji, W. Y.; Wang, T. X.; Ding, X. S.; Han, B. H.; Feng, W. Maximized lithiophilic carbonyl units in covalent organic frameworks as effective Li ion regulators for lithium metal batteries. Chem. Eng. J. 2022, 437, 135293.
Yan, J.; Liu, F. Q.; Hu, Z. Y.; Gao, J.; Zhou, W. D.; Huo, H.; Zhou, J. J.; Li, L. Realizing dendrite-free lithium deposition with a composite separator. Nano Lett. 2020, 20, 3798–3807.
Chen, D. D.; Liu, P.; Zhong, L.; Wang, S. J.; Xiao, M.; Han, D. M.; Huang, S.; Meng, Y. Z. Covalent organic frameworks with low surface work function enabled stable lithium anode. Small. 2021, 17, 2101496.
Li, X. R.; Tian, Y.; Shen, L.; Qu, Z. B.; Ma, T. Q.; Sun, F.; Liu, X. Y.; Zhang, C.; Shen, J. Q.; Li, X. Y. et al. Electrolyte interphase built from anionic covalent organic frameworks for lithium dendrite suppression. Adv. Funct. Mater. 2021, 31, 2009718.
Wang, W. B.; Yang, Z. H.; Zhang, Y. T.; Wang, A. P.; Zhang, Y. R.; Chen, L. L.; Li, Q.; Qiao, S. L. Highly stable lithium metal anode enabled by lithiophilic and spatial-confined spherical-covalent organic framework. Energy Storage Mater. 2022, 46, 374–383.
Chen, D. D.; Huang, S.; Zhong, L.; Wang, S. J.; Xiao, M.; Han, D. M.; Meng, Y. Z. In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting Li dendrite puncture. Adv. Funct. Mater. 2020, 30, 1907717.
Xu, Y.; Zhou, Y.; Li, T.; Jiang, S. H.; Qian, X.; Yue, Q.; Kang, Y. J. Multifunctional covalent organic frameworks for high capacity and dendrite-free lithium metal batteries. Energy Storage Mater. 2020, 25, 334–341.
Xu, S. M.; Duan, H.; Shi, J. L.; Zuo, T. T.; Hu, X. C.; Lang, S. Y.; Yan, M.; Liang, J. Y.; Yang, Y. G.; Kong, Q. H. et al. In situ fluorinated solid electrolyte interphase towards long-life lithium metal anodes. Nano Res. 2020, 13, 430–436.
Yang, C. P.; Liu, B. Y.; Jiang, F.; Zhang, Y.; Xie, H.; Hitz, E.; Hu, L. B. Garnet/polymer hybrid ion-conducting protective layer for stable lithium metal anode. Nano Res. 2017, 10, 4256–4265.
Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.
Zhao, G. F.; Li, H. N.; Gao, Z. H.; Xu, L. F.; Mei, Z. Y.; Cai, S.; Liu, T. T.; Yang, X. F.; Guo, H.; Sun, X. L. Dual-active-center of polyimide and triazine modified atomic-layer covalent organic frameworks for high-performance Li storage. Adv. Funct. Mater. 2021, 31, 2101019.
Gui, B.; Lin, G. Q.; Ding, H. M.; Gao, C.; Mal, A.; Wang, C. Three-dimensional covalent organic frameworks: From topology design to applications. Acc. Chem. Res. 2020, 53, 2225–2234.
Zhang, Y. R.; Wang, W. B.; Hou, M. L.; Zhang, Y. T.; Dou, Y. Y.; Yang, Z. H.; Xu, X. Y.; Liu, H. N.; Qiao, S. L. Self-exfoliated covalent organic framework nano-mesh enabled regular charge distribution for highly stable lithium metal battery. Energy Storage Mater. 2022, 47, 376–385.
He, J. R.; Bhargav, A.; Manthiram, A. Covalent organic framework as an efficient protection layer for a stable lithium-metal anode. Angew. Chem., Int. Ed. 2022, 61, 202116586.
Wu, X. W.; Hong, Y. L.; Xu, B. Q.; Nishiyama, Y.; Jiang, W.; Zhu, J. W.; Zhang, G.; Kitagawa, S.; Horike, S. Perfluoroalkyl-functionalized covalent organic frameworks with superhydrophobicity for anhydrous proton conduction. J. Am. Chem. Soc. 2020, 142, 14357–14364.
Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem. Soc. 2011, 133, 11478–11481.
Li, J.; Zhang, H. T.; Cui, Y. Y.; Da, H. R.; Cai, Y. J.; Zhang, S. J. Constructing interfacial gradient layers and enhancing lithium salt dissolution kinetics for hour-rate solid-state batteries. Nano Energy. 2022, 102, 107716.
Ma, T.; Ni, Y. X.; Wang, Y. Q.; Zhang, W. J.; Jin, S.; Zheng, S. B.; Yang, X.; Hou, Y. P.; Tao, Z. L.; Chen, J. Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem., Int. Ed. 2022, 61, e202207927.
Jeong, K.; Park, S.; Jung, G. Y.; Kim, S. H.; Lee, Y. H.; Kwak, S. K.; Lee, S. Y. Solvent-free, single lithium-ion conducting covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 5880–5885.
Zhao, Z. D.; Wang, R.; Peng, C. X.; Chen, W. J.; Wu, T. Q.; Hu, B.; Weng, W. J.; Yao, Y.; Zeng, J. X.; Chen, Z. H. et al. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 2021, 12, 6606.
Lu, Y. Y.; Tikekar, M.; Mohanty, R.; Hendrickson, K.; Ma, L.; Archer, L. A. Stable cycling of lithium metal batteries using high transference number electrolytes. Adv. Energy Mater. 2015, 5, 1402073.
Tu, Z. Y.; Nath, P.; Lu, Y. Y.; Tikekar, M. D.; Archer, L. A. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Acc. Chem. Res. 2015, 48, 2947–2956.
Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2017, 56, 7764–7768.
Ren, X. D.; Gao, P. Y.; Zou, L. F.; Jiao, S. H.; Cao, X.; Zhang, X. H.; Jia, H.; Engelhard, M. H.; Matthews, B. E.; Wu, H. P. et al. Role of inner solvation sheath within salt-solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proc. Natl. Acad. Sci. USA 2020, 117, 28603–28613.
Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.