Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Mesoporous carbon nanomaterials have shown a great application potential in energy storage and conversion fields due to their outstanding conductivity, tunable pore structure, and good chemical stability. Nevertheless, how to accurately control the pore structure, especially directly assembling the mesoporous carbon onto different substrates remains a big challenge. Herein, we have successfully assembled two kinds of highly nitrogen-doped mesoporous carbon onto carbon nanotubes (NMC/CNTs) based on a facile cooperative assembly process assisted by triblock PEO20PPO70PEO20 (P123) and PEO106PPO70PEO106 (F127) copolymers. The experimental results indicate that the P123/F127 mass ratio has a profound effect on the pore structure, leading to the formation of NMC/CNTs composites with spherical pore structure (S-NMC/CNTs) and cylindrical pore structure (C-NMC/CNTs). In virtue of fast electron/ion transfer kinetics, the as-prepared S-NMC/CNTs anode demonstrates an excellent electrochemical performance for lithium-ion batteries, and it delivers a high reversible capacity of 588.1 mAh∙g−1 at the current of 0.1 A∙g−1 after 100 cycles, along with a superior cycling stability. Specifically noted, the controlled assembly route developed in our work can also be applied to other support materials with different structures and compositions.
Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.
Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.
Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.
Geng, H. Y.; Peng, Y.; Qu, L. T.; Zhang, H. J.; Wu, M. H. Structure design and composition engineering of carbon-based nanomaterials for lithium energy storage. Adv. Energy Mater. 2020, 10, 1903030.
Kim, M. S.; Bhattacharjya, D.; Fang, B. Z.; Yang, D. S.; Bae, T. S.; Yu, J. S. Morphology-dependent Li storage performance of ordered mesoporous carbon as anode material. Langmuir 2013, 29, 6754–6761.
He, F. Y.; Tang, C.; Zhu, G. J.; Liu, Y. D.; Du, A. J.; Zhang, Q. B.; Wu, M. H.; Zhang, H. J. Leaf-inspired design of mesoporous Sb2S3/N-doped Ti3C2Tx composite towards fast sodium storage. Sci. China Chem. 2021, 64, 964–973.
Xu, W. L.; Tang, C.; Huang, N.; Du, A. J.; Wu, M. H.; Zhang, J. J.; Zhang, H. J. Adina rubella-like microsized SiO@N-doped carbon grafted with N-doped carbon nanotubes as anodes for high-performance lithium storage. Small Sci. 2022, 2, 2100105.
Ma, T. Y.; Liu, L.; Yuan, Z. Y. Direct synthesis of ordered mesoporous carbons. Chem. Soc. Rev. 2013, 42, 3977–4003.
Guo, D. Y.; Fu, Y. B.; Bu, F. X.; Liang, H. C.; Duan, L. L.; Zhao, Z. W.; Wang, C. Y.; El-Toni, A. M.; Li, W.; Zhao, D. Y. Monodisperse ultrahigh nitrogen-containing mesoporous carbon nanospheres from melamine-formaldehyde resin. Small Methods 2021, 5, 2001137.
Septani, C. M.; Wang, C. A.; Jeng, U. S.; Su, Y. C.; Ko, B. T.; Sun, Y. S. Hierarchically porous carbon materials from self-assembled block copolymer/dopamine mixtures. Langmuir 2020, 36, 11754–11764.
Peng, L.; Peng, H. R.; Hung, C. T.; Guo, D. Y.; Duan, L. L.; Ma, B.; Liu, L. L.; Li, W.; Zhao, D. Y. Programmable synthesis of radially gradient-structured mesoporous carbon nanospheres with tunable core–shell architectures. Chem 2021, 7, 1020–1032.
Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.
Zhang, Y. Z.; Chen, L.; Meng, Y.; Xie, J.; Guo, Y.; Xiao, D. Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey. J. Power Sources 2016, 335, 20–30.
Wang, J.; Chang, Z.; Ding, B.; Li, T.; Yang, G. L.; Pang, Z. B.; Nakato, T.; Eguchi, M.; Kang, Y. M.; Na, J. et al. Universal access to two-dimensional mesoporous heterostructures by micelle-directed interfacial assembly. Angew. Chem., Int. Ed. 2020, 59, 19570–19575.
Wang, L.; Du, Z.; Xiang, L. X.; Hou, D.; Zhu, S. H.; Zhu, J. F.; Mai, Y. Y.; Che, R. C. The ordered mesoporous carbon coated graphene as a high-performance broadband microwave absorbent. Carbon 2021, 179, 435–444.
Wang, R. C.; Lan, K.; Lin, R. F.; Jing, X. X.; Hung, C. T.; Zhang, X. M.; Liu, L. L.; Yang, Y.; Chen, G.; Liu, X. G. et al. Precisely controlled vertical alignment in mesostructured carbon thin films for efficient electrochemical sensing. ACS Nano 2021, 15, 7713–7721.
Fang, Y.; Lv, Y. Y.; Tang, J.; Wu, H.; Jia, D. S.; Feng, D.; Kong, B.; Wang, Y. C.; Elzatahry, A. A.; Al-Dahyan, D. et al. Growth of single-layered two-dimensional mesoporous polymer/carbon films by self-assembly of monomicelles at the interfaces of various substrates. Angew. Chem., Int. Ed. 2015, 54, 8425–8429.
Dong, R. H.; Zhang, T.; Feng, X. L. Interface-assisted synthesis of 2D materials: Trend and challenges. Chem. Rev. 2018, 118, 6189–6235.
Tu, S. B.; Su, H.; Sui, D.; He, Y. W.; Cheng, M. R.; Bai, P. X.; Zhang, C.; Sun, P. F.; Wang, C. H.; Jiang, J. X. et al. Mesoporous carbon nanomaterials with tunable geometries and porous structures fabricated by a surface-induced assembly strategy. Energy Storage Mater. 2021, 35, 602–609.
Culebras, M.; Geaney, H.; Beaucamp, A.; Upadhyaya, P.; Dalton, E.; Ryan, K. M.; Collins, M. N. Bio-derived carbon nanofibres from lignin as high-performance Li-ion anode materials. ChemSusChem 2019, 12, 4516–4521.
Liu, X. M.; Huang, Z. D.; Oh, S. W.; Zhang, B.; Ma, P. C.; Yuen, M. M. F.; Kim, J. K. Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review. Compos. Sci. Technol. 2012, 72, 121–144.
Liu, S. H.; Gordiichuk, P.; Wu, Z. S.; Liu, Z. Y.; Wei, W.; Wagner, M.; Mohamed-Noriega, N.; Wu, D. Q.; Mai, Y. Y.; Herrmann, A. et al. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. Nat. Commun. 2015, 6, 8817.
Xu, Y.; Zhang, C. L.; Zhou, M.; Fu, Q.; Zhao, C. X.; Wu, M. H.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.
Wang, N.; Hou, D.; Li, Q.; Zhang, P. F.; Wei, H.; Mai, Y. Y. Two-dimensional interface engineering of mesoporous polydopamine on graphene for novel organic cathodes. ACS Appl. Energy Mater. 2019, 2, 5816–5823.
Tian, H.; Zhu, S. Y.; Xu, F. G.; Mao, W. T.; Wei, H.; Mai, Y. Y.; Feng, X. L. Growth of 2D mesoporous polyaniline with controlled pore structures on ultrathin MoS2 nanosheets by block copolymer self-assembly in solution. ACS Appl. Mater. Interfaces 2017, 9, 43975–43982.
Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.
Xia, S. S.; Wang, Y. R.; Liu, Y.; Wu, C. H.; Wu, M. H.; Zhang, H. J. Ultrathin MoS2 nanosheets tightly anchoring onto nitrogen-doped graphene for enhanced lithium storage properties. Chem. Eng. J. 2018, 332, 431–439.
Tan, H. B.; Tang, J.; Henzie, J.; Li, Y. Q.; Xu, X. T.; Chen, T.; Wang, Z. L.; Wang, J. Y.; Ide, Y.; Bando, Y. et al. Assembly of hollow carbon nanospheres on graphene nanosheets and creation of iron–nitrogen-doped porous carbon for oxygen reduction. ACS Nano 2018, 12, 5674–5683.
Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.
Zhang, B. T.; Wang, Q.; Zhang, Y.; Teng, Y. G.; Fan, M. H. Degradation of ibuprofen in the carbon dots/Fe3O4@carbon sphere pomegranate-like composites activated persulfate system. Sep. Purif. Technol. 2020, 242, 116820.
Wang, W.; Zhou, J. H.; Wang, Z. P.; Zhao, L. Y.; Li, P. H.; Yang, Y.; Yang, C.; Huang, H. X.; Guo, S. J. Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 2018, 8, 1701648.
Cao, B.; Zhang, Q.; Liu, H.; Xu, B.; Zhang, S. L.; Zhou, T. F.; Mao, J. F.; Pang, W. K.; Guo, Z. P.; Li, A. et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801149.
Zhang, H. J.; Li, Z. Y.; Xu, P. P.; Wu, R. F.; Jiao, Z. A facile two step synthesis of novel chrysanthemum-like mesoporous silicananoparticles for controlled pyrene release. Chem. Commun. 2010, 46, 6783–6785.
Liu, J.; Yang, T. Y.; Wang, D. W.; Lu, G. Q.; Zhao, D. Y.; Qiao, S. Z. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat. Commun. 2013, 4, 2798.
Zhang, R.; Liu, Z. L.; Gao, T. N.; Zhang, L. L.; Zheng, Y. N.; Zhang, J. N.; Zhang, L.; Qiao, Z. A. A solvent-polarity-induced interface self-assembly strategy towards mesoporous triazine-based carbon materials. Angew. Chem., Int. Ed. 2021, 60, 24299–24305.
Merline, D. J.; Vukusic, S.; Abdala, A. A. Melamine formaldehyde: Curing studies and reaction mechanism. Polym. J. 2013, 45, 413–419.
Tian, H.; Qin, J. Q.; Hou, D.; Li, Q.; Li, C.; Wu, Z. S.; Mai, Y. Y. General interfacial self-assembly engineering for patterning two-dimensional polymers with cylindrical mesopores on graphene. Angew. Chem., Int. Ed. 2019, 58, 10173–10178.
Chaibundit, C.; Ricardo, N. M. P. S.; De M. L. L. Costa, F.; Yeates, S. G.; Booth, C. Micellization and gelation of mixed copolymers P123 and F127 in aqueous solution. Langmuir 2007, 23, 9229–9236.
Lam, Y. M.; Grigorieff, N.; Goldbeck-Wood, G. Direct visualisation of micelles of pluronic block copolymers in aqueous solution by cryo-TEM. Phys. Chem. Chem. Phys. 1999, 1, 3331–3334.
Mai, Y. Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985.
Li, C.; Li, Q.; Kaneti, Y. V.; Hou, D.; Yamauchi, Y.; Mai, Y. Y. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem. Soc. Rev. 2020, 49, 4681–4736.
Zhang, L. L.; Wang, T.; Gao, T. N.; Xiong, H. L.; Zhang, R.; Liu, Z. L.; Song, S. Y.; Dai, S.; Qiao, Z. A. Multistage self-assembly strategy: Designed synthesis of N-doped mesoporous carbon with high and controllable pyridine N content for ultrahigh surface-area-normalized capacitance. CCS Chem. 2020, 3, 870–881.
Wang, C. Y.; Wan, X. Y.; Duan, L. L.; Zeng, P. Y.; Liu, L. L.; Guo, D. Y.; Xia, Y.; Elzatahry, A. A.; Xia, Y. Y.; Li, W. et al. Molecular design strategy for ordered mesoporous stoichiometric metal oxide. Angew. Chem., Int. Ed. 2019, 58, 15863–15868.
Yin, H.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Li, C.; Huo, K. F.; Zhu, M. Q. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res. 2017, 10, 2156–2167.
Wu, X. L.; Liu, Q.; Guo, Y. G.; Song, W. G. Superior storage performance of carbon nanosprings as anode materials for lithium-ion batteries. Electrochem. Commun. 2009, 11, 1468–1471.
Wang, F. F.; Song, R. R.; Song, H. H.; Chen, X. H.; Zhou, J. S.; Ma, Z. K.; Li, M. C.; Lei, Q. Simple synthesis of novel hierarchical porous carbon microspheres and their application to rechargeable lithium-ion batteries. Carbon 2015, 81, 314–321.
Wang, L. P.; Schütz, C.; Salazar-Alvarez, G.; Titirici, M. M. Carbon aerogels from bacterial nanocellulose as anodes for lithium ion batteries. RSC Adv. 2014, 4, 17549–17554.
Saravanan, K. R.; Kalaiselvi, N. Nitrogen containing bio-carbon as a potential anode for lithium batteries. Carbon 2015, 81, 43–53.
Li, M. Y.; Wu, Y.; Zhao, F.; Wei, Y.; Wang, J. P.; Jiang, K. L.; Fan, S. S. Cycle and rate performance of chemically modified super-aligned carbon nanotube electrodes for lithium ion batteries. Carbon 2014, 69, 444–451.
Zhang, W. L.; Yin, J.; Lin, Z. Q.; Lin, H. B.; Lu, H. Y.; Wang, Y.; Huang, W. M. Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance. Electrochim. Acta 2015, 176, 1136–1142.
Lei, W.; Han, L. L.; Xuan, C. J.; Lin, R. Q.; Liu, H. F.; Xin, H. L.; Wang, D. L. Nitrogen-doped carbon nanofibers derived from polypyrrole coated bacterial cellulose as high-performance electrode materials for supercapacitors and Li-ion batteries. Electrochim. Acta 2016, 210, 130–137.
Tang, K.; White, R. J.; Mu, X. K.; Titirici, M. M.; Van Aken, P. A.; Maier, J. Hollow carbon nanospheres with a high rate capability for lithium-based batteries. ChemSusChem 2012, 5, 400–403.
Wang, L. P.; Schnepp, Z.; Titirici, M. M. Rice husk-derived carbon anodes for lithium ion batteries. J. Mater. Chem. A 2013, 1, 5269–5273.