AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Microwave triggered multifunctional nanoplatform for targeted photothermal-chemotherapy in castration-resistant prostate cancer

Pengyuan Liu1,3,§Yajun Wu1,6,§Xiaogang Xu4,§Xudong Fan2,§Chuan Sun4Xiaojie Chen2Jindan Xia1Shiting Bai1Li Qu7Huasong Lu5Jing Wu1,3Jun Chen1( )Ji-Gang Piao2( )Zhibing Wu1,3( )
Department of Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
Department of Radiation Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
TCM Dispensary, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
Department of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China

§ Pengyuan Liu, Yajun Wu, Xiaogang Xu, and Xudong Fan contributed equally to this work.

Show Author Information

Graphical Abstract

This study reports the development of cmHSP70-PL-AuNC-DOX, a tumor-targeting nanoplatform consisting of a thermosensitive lipid-coated gold nanocage, heat shock protein 70 monoclonal antibody, and chemotherapeutic drug doxorubicin, for precise targeting treatment of castration-resistant prostate cancer.

Abstract

Lacking a precise targeting strategy, castration-resistant prostate cancer (CRPC) is still hard to be treat effectively. Exploring treatment options that can accurately target CPRC is an important issue with urgent need. In this study, a novel nanotechnology-based strategy had been developed for the precise target treatment of CRPC. By combining microwaves and photothermal therapy (PTT), this nanoplatform, cmHSP70-PL-AuNC-DOX, targets tumor tissues with outstanding precision and achieves better anti-tumor activity by simultaneously eliciting photothermal and chemotherapeutic effects. From nanotechnology, cmHSP70-modified and thermo-sensitive liposome-coated AuNC-DOX were prepared and used for CRPC-targeted photothermal ablation and chemotherapy. Doxorubicin (DOX) was selected as the chemotherapeutic agent for cytotoxicity. In terms of the curative scheme, prostate tissues were firstly pre-treated with microwaves to induce the expression of heat shock protein 70 (HSP70) and its migration to the cell membrane, which was then targeted by HSP70 antibody (cmHSP70) coated on the nanoparticles to achieve accurate drug delivery. The nanoplatform then achieved precise ablation and controlled release of DOX under external near-infrared (NIR) irradiation. Through the implementation, the targeting, cell killing, and safety of this therapeutical strategy had been verified in vivo and in vitro. This work establishes an accurate, controllable, efficient, non-invasive, and safe treatment platform for targeting CRPC, provides a rational design for CRPC’s PTT, and offers new prospects for nanomedicines with great precision.

Electronic Supplementary Material

Download File(s)
12274_2023_5541_MOESM1_ESM.pdf (668.7 KB)

References

[1]

Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33.

[2]

Sweeney, C. J.; Martin, A. J.; Stockler, M. R.; Begbie, S.; Chi, K. N.; Chowdhury, S.; Coskinas, X.; Frydenberg, M.; Hague, W. E.; Horvath, L. G. et al. Overall survival of men with metachronous metastatic hormone-sensitive prostate cancer treated with enzalutamide and androgen deprivation therapy. Eur. Urol. 2021, 80, 275–279.

[3]

Petrylak, D. P.; Ratta, R.; Gafanov, R.; Facchini, G.; Piulats, J. M.; Kramer, G.; Flaig, T. W.; Chandana, S. R.; Li, B.; Burgents, J. et al. KEYNOTE-921: Phase III study of pembrolizumab plus docetaxel for metastatic castration-resistant prostate cancer. Future Oncol. 2021, 17, 3291–3299.

[4]

Cornford, P.; van den Bergh, R. C. N.; Briers, E.; van den Broeck, T.; Cumberbatch, M. G.; de Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S. et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer. Part II-2020 update: Treatment of relapsing and metastatic prostate cancer. Eur. Urol. 2021, 79, 263–282.

[5]

Teo, M. Y.; Rathkopf, D. E.; Kantoff, P. Treatment of advanced prostate cancer. Annu. Rev. Med. 2019, 70, 479–499.

[6]

Mansinho, A.; Macedo, D.; Fernandes, I.; Costa, L. Castration-resistant prostate cancer: Mechanisms, targets and treatment. Adv. Exp. Med. Biol. 2018, 1096, 117–133.

[7]

Komura, K.; Sweeney, C. J.; Inamoto, T.; Ibuki, N.; Azuma, H.; Kantoff, P. W. Current treatment strategies for advanced prostate cancer. Int. J. Urol. 2018, 25, 220–231.

[8]

Barata, P. C.; Sartor, A. O. Metastatic castration-sensitive prostate cancer: Abiraterone, docetaxel, or…. Cancer 2019, 125, 1777–1788.

[9]

Satapathy, S.; Mittal, B. R.; Sood, A.; Das, C. K.; Mavuduru, R. S.; Goyal, S.; Shukla, J.; Singh, S. K. 177Lu-PSMA-617 versus docetaxel in chemotherapy-naïve metastatic castration-resistant prostate cancer:A randomized, controlled, phase 2 non-inferiority trial. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1754–1764.

[10]

Hofman, M. S.; Emmett, L.; Sandhu, S.; Iravani, A.; Joshua, A. M.; Goh, J. C.; Pattison, D. A.; Tan, T. H.; Kirkwood, I. D.; Ng, S. et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): A randomised, open-label, phase 2 trial. Lancet 2021, 397, 797–804.

[11]

Ruiz de Porras, V.; Font, A.; Aytes, A. Chemotherapy in metastatic castration-resistant prostate cancer: Current scenario and future perspectives. Cancer Lett. 2021, 523, 162–169.

[12]

Bansal, D.; Reimers, M. A.; Knoche, E. M.; Pachynski, R. K. Immunotherapy and immunotherapy combinations in metastatic castration-resistant prostate cancer. Cancers 2021, 13, 334.

[13]

Handy, C. E.; Antonarakis, E. S. Sipuleucel-T for the treatment of prostate cancer: Novel insights and future directions. Future Oncol. 2018, 14, 907–917.

[14]

Wei, X. X.; Kwak, L.; Hamid, A.; He, M.; Sweeney, C.; Flanders, S. C.; Harmon, M.; Choudhury, A. D. Outcomes in men with metastatic castration-resistant prostate cancer who received sipuleucel-T and no immediate subsequent therapy: Experience at dana Farber and in the PROCEED registry. Prostate Cancer Prostatic Dis. 2022, 25, 314–319.

[15]

Hawley, J. E.; Pan, S.; Kandadi, H.; Chaimowitz, M. G.; Sheikh, N.; Drake, C. G. Analysis of circulating immune biomarkers by race in men with metastatic castration-resistant prostate cancer treated with sipuleucel-T. J. Natl. Cancer Inst. 2022, 114, 314–317.

[16]

Kantoff, P. W.; Higano, C. S.; Shore, N. D.; Berger, E. R.; Small, E. J.; Penson, D. F.; Redfern, C. H.; Ferrari, A. C.; Dreicer, R.; Sims, R. B. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 2010, 363, 411–422.

[17]

Sweeney, C.; Bracarda, S.; Sternberg, C. N.; Chi, K. N.; Olmos, D.; Sandhu, S.; Massard, C.; Matsubara, N.; Alekseev, B.; Parnis, F. et al. Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): A multicentre, randomised, double-blind, phase 3 trial. Lancet 2021, 398, 131–142.

[18]

Posdzich, P.; Darr, C.; Hilser, T.; Wahl, M.; Herrmann, K.; Hadaschik, B.; Grünwald, V. Metastatic prostate cancer-a review of current treatment options and promising new approaches. Cancers 2023, 15, 461.

[19]

Kotani, N.; Wilkins, J. J.; Wade, J. R.; Dang, S.; Sutaria, D. S.; Yoshida, K.; Sundrani, S.; Ding, H.; Garcia, J.; Hinton, H. et al. Characterization of exposure-response relationships of ipatasertib in patients with metastatic castration-resistant prostate cancer in the IPATential150 study. Cancer Chemother. Pharmacol. 2022, 90, 511–521.

[20]

Gasmi, A.; Roubaud, G.; Dariane, C.; Barret, E.; Beauval, J. B.; Brureau, L.; Créhange, G.; Fiard, G.; Fromont, G.; Gauthé, M. et al. Overview of the development and use of akt inhibitors in prostate cancer. J. Clin. Med. 2021, 11, 160.

[21]

Zhang, T.; George, D. J.; Armstrong, A. J. Precision medicine approaches when prostate cancer akts up. Clin. Cancer Res. 2019, 25, 901–903.

[22]

Kessel, K.; Bernemann, C.; Bögemann, M.; Rahbar, K. Evolving castration resistance and prostate specific membrane antigen expression: Implications for patient management. Cancers 2021, 13, 3556.

[23]

Emmett, L.; Buteau, J.; Papa, N.; Moon, D.; Thompson, J.; Roberts, M. J.; Rasiah, K.; Pattison, D. A.; Yaxley, J.; Thomas, P. et al. The additive diagnostic value of prostate-specific membrane antigen positron emission tomography computed tomography to multiparametric magnetic resonance imaging triage in the diagnosis of prostate cancer (PRIMARY): A prospective multicentre study. Eur. Urol. 2021, 80, 682–689.

[24]

Yamada, Y.; Beltran, H. Clinical and biological features of neuroendocrine prostate cancer. Curr. Oncol. Rep. 2021, 23, 15.

[25]

Ferroni, C.; Del Rio, A.; Martini, C.; Manoni, E.; Varchi, G. Light-induced therapies for prostate cancer treatment. Front. Chem. 2019, 7, 719.

[26]

Shi, X. L.; Tian, Y.; Liu, Y.; Xiong, Z. R.; Zhai, S. B.; Chu, S. L.; Gao, F. X. Research progress of photothermal nanomaterials in multimodal tumor therapy. Front. Oncol. 2022, 12, 939365.

[27]

Milan, J.; Niemczyk, K.; Kus-Liśkiewicz, M. Treasure on the earth-gold nanoparticles and their biomedical applications. Materials 2022, 15, 3355.

[28]

Wang, Y.; Li, J.; Li, X. B.; Shi, J. P.; Jiang, Z. T.; Zhang, C. Y. Graphene-based nanomaterials for cancer therapy and anti-infections. Bioact. Mater. 2022, 14, 335–349.

[29]

Rastinehad, A. R.; Anastos, H.; Wajswol, E.; Winoker, J. S.; Sfakianos, J. P.; Doppalapudi, S. K.; Carrick, M. R.; Knauer, C. J.; Taouli, B.; Lewis, S. C. et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl. Acad. Sci. USA 2019, 116, 18590–18596.

[30]

Hwang, E.; Jung, H. S. Organelle-targeted photothermal agents for cancer therapy. Chem. Commun. 2021, 57, 7731–7742.

[31]

Ren, Y. T.; Yan, Y. Y.; Qi, H. Photothermal conversion and transfer in photothermal therapy: From macroscale to nanoscale. Adv. Colloid Interface Sci. 2022, 308, 102753.

[32]

Kalyane, D.; Raval, N.; Maheshwari, R.; Tambe, V.; Kalia, K.; Tekade, R. K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C 2019, 98, 1252–1276.

[33]

Shinde, V. R.; Revi, N.; Murugappan, S.; Singh, S. P.; Rengan, A. K. Enhanced permeability and retention effect: A key facilitator for solid tumor targeting by nanoparticles. Photodiagnosis. Photodyn. Ther. 2022, 39, 102915.

[34]

Shekhar, S.; Chauhan, M.; Sonali, Yadav, B.; Dutt, R.; Hu, L. D.; Muthu, M. S.; Singh, R. P. Enhanced permeability and retention effect-focused tumor-targeted nanomedicines: Latest trends, obstacles and future perspective. Nanomedicine 2022, 17, 1213–1216.

[35]

Wang, Y. C.; Liu, Y. J.; Luehmann, H.; Xia, X. H.; Brown, P.; Jarreau, C.; Welch, M.; Xia, Y. N. Evaluating the pharmacokinetics and in vivo cancer targeting capability of Au nanocages by positron emission tomography imaging. ACS Nano 2012, 6, 5880–5888.

[36]

Pan, P.; Svirskis, D.; Rees, S. W. P.; Barker, D.; Waterhouse, G. I. N.; Wu, Z. M. Photosensitive drug delivery systems for cancer therapy: Mechanisms and applications. J. Control. Release 2021, 338, 446–461.

[37]

Yang, C. B.; Lin, Z. I.; Chen, J. A.; Xu, Z. R.; Gu, J. Y.; Law, W. C.; Yang, J. H. C.; Chen, C. K. Organic/inorganic self-assembled hybrid nano-architectures for cancer therapy applications. Macromol. Biosci. 2022, 22, e2100349.

[38]

Robinson, R.; Gerlach, W.; Ghandehari, H. Comparative effect of gold nanorods and nanocages for prostate tumor hyperthermia. J. Control. Release 2015, 220, 245–252.

[39]

Qiu, J. C.; Liu, Y. J.; Xia, Y. N. Radiolabeling of gold nanocages for potential applications in tracking, diagnosis, and image-guided therapy. Adv. Healthc. Mater. 2021, 10, 2002031.

[40]

Park, J. H.; Seo, H.; Kim, D. I.; Choi, J. H.; Son, J. H.; Kim, J.; Moon, G. D.; Hyun, D. C. Gold nanocage-incorporated poly(ε-caprolactone) (PCL) fibers for chemophotothermal synergistic cancer therapy. Pharmaceutics 2019, 11, 60.

[41]

He, H. M.; Liu, L. L.; Zhang, S. P.; Zheng, M. B.; Ma, A. Q.; Chen, Z.; Pan, H.; Zhou, H. M.; Liang, R. J.; Cai, L. T. Smart gold nanocages for mild heat-triggered drug release and breaking chemoresistance. J. Control. Release 2020, 323, 387–397.

[42]

Cheng, Y.; Bao, D. D.; Chen, X. J.; Wu, Y. J.; Wei, Y. H.; Wu, Z. B.; Li, F. Z.; Piao, J. G. Microwave-triggered/HSP-targeted gold nano-system for triple-negative breast cancer photothermal therapy. Int. J. Pharm. 2021, 593, 120162.

Nano Research
Pages 9688-9700
Cite this article:
Liu P, Wu Y, Xu X, et al. Microwave triggered multifunctional nanoplatform for targeted photothermal-chemotherapy in castration-resistant prostate cancer. Nano Research, 2023, 16(7): 9688-9700. https://doi.org/10.1007/s12274-023-5541-1
Topics:

1056

Views

6

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 29 October 2022
Revised: 27 January 2023
Accepted: 02 February 2023
Published: 27 February 2023
© Tsinghua University Press 2023
Return