AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hydrogen-bonded organic framework for red light-mediated photocatalysis

Haofei Zhao1,§Ziwen Zhou1,§Xuenan Feng1,§Chao Liu1,3( )Hui Wu2Wei Zhou2Hailong Wang1( )
Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, USA
College of Chemistry and Materials Science, Hebei University, Baoding 071002, China

§ Haofei Zhao, Ziwen Zhou, and Xuenan Feng contributed equally to this work.

Show Author Information

Graphical Abstract

We have prepared a hydrogen-bonded organic framework (HOF-66) built from an ethylamino-substituted naphthalenediimide derivative for red light photocatalysis. Red light-driven photocatalytic performance of HOF-66 is significantly increased 28 times than its HOF analogue constructed by an unsubstituted naphthalenediimide derivative.

Abstract

The development of heterogeneous molecule-based catalysts for red light-mediated photocatalysis is still challenging due to the improper light absorption for most materials and the photoactivity deactivation for solid assembly. Herein, red light photocatalysis with a hydrogen-bonded organic framework (HOF) is established. This HOF, named HOF-66, is formed from the self-assembly of guanine-decorated naphthalenediimide (NDI) molecule through hydrogen-bonded guanine-quadruplex nodes, showing square grid supramolecular layers confirmed by powder X-ray diffraction analysis. In contrast to unsubstituted NDI HOF, introduction of ethylamino groups to NDI core in HOF-66 tunes strong electronic maximum absorption peak to 619 nm, allowing red light photocatalysis of singlet oxygen evolution proved by 1,3-diphenylisobenzofuran degradation and electron spin resonance determination. Particularly, under the same conditions, the sulfide oxidation rate in the presence of HOF-66 was 28 times higher compared to its unsubstituted analogue. This work integrates the molecular design and aggregation effect towards the application of HOFs, opening a new gate for red light photocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2023_5543_MOESM1_ESM.pdf (2.7 MB)

References

[1]

Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Photocatalysis for the formation of the C–C bond. Chem. Rev. 2007, 107, 2725–2756.

[2]

Hoffmann, N. Photochemical reactions as key steps in organic synthesis. Chem. Rev. 2008, 108, 1052–1103.

[3]

Ravelli, D.; Fagnoni, M.; Albini, A. Photoorganocatalysis. What for? Chem. Soc. Rev. 2013, 42, 97–113.

[4]

Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev. 2013, 113, 5322–5363.

[5]

Schultz, D. M.; Yoon, T. P. Solar synthesis: Prospects in visible light photocatalysis. Science 2014, 343, 1239176.

[6]

Gao, M. M.; Zhang, T. X.; Ho, G. W. Advances of photothermal chemistry in photocatalysis, thermocatalysis, and synergetic photothermocatalysis for solar-to-fuel generation. Nano Res. 2022, 15, 9985–10005.

[7]

Nicewicz, D. A.; Nguyen, T. M. Recent applications of organic dyes as photoredox catalysts in organic synthesis. ACS Catal. 2014, 4, 355–360.

[8]

Phelan, J. P.; Lang, S. B.; Compton, J. S.; Kelly, C. B.; Dykstra, R.; Gutierrez, O.; Molander, G. A. Redox-neutral photocatalytic cyclopropanation via radical/polar crossover. J. Am. Chem. Soc. 2018, 140, 8037–8047.

[9]

Mei, L. Y.; Veleta, J. M.; Gianetti, T. L. Helical carbenium ion: A versatile organic photoredox catalyst for red-light-mediated reactions. J. Am. Chem. Soc. 2020, 142, 12056–12061.

[10]

Shi, J. L.; Chen, R. F.; Hao, H. M.; Wang, C.; Lang, X. J. 2D sp2 carbon-conjugated porphyrin covalent organic framework for cooperative photocatalysis with TEMPO. Angew. Chem., Int. Ed. 2020, 59, 9088–9093.

[11]

Li, H. N.; Yang, Y.; He, C.; Zeng, L.; Duan, C. Y. Mixed-ligand metal-organic framework for two-photon responsive photocatalytic C–N and C–C coupling reactions. ACS Catal. 2019, 9, 422–430.

[12]

Öberg, K. I. Photochemistry and Astrochemistry: Photochemical pathways to interstellar complex organic molecules. Chem. Rev. 2016, 116, 9631–9663.

[13]

Juris, A.; Balzani, V.; Belser, P.; von Zelewsky, A. Characterization of the excited state properties of some new photosensitizers of the ruthenium (polypyridine) family. Helv. Chim. Acta 1981, 64, 2175–2182.

[14]

Kalyanasundaram, K. Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues. Coord. Chem. Rev. 1982, 46, 159–244.

[15]

Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A.; Malliaras, G. G.; Bernhard, S. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem. Mater. 2005, 17, 5712–5719.

[16]

Liu, C.; Liu, K. H.; Wang, C. M.; Liu, H. Y.; Wang, H. L.; Su, H. M.; Li, X. Y.; Chen, B. L.; Jiang, J. Z. Elucidating heterogeneous photocatalytic superiority of microporous porphyrin organic cage. Nat. Commun. 2020, 11, 1047.

[17]

Ren, H. M.; Liu, C.; Yang, W.; Jiang, J. Z. Sensitive and selective sensor based on porphyrin porous organic cage fluorescence towards copper ion. Dyes Pigm. 2022, 200, 110117.

[18]

Feng, X. N.; Wang, X. Q.; Wang, H. L.; Wu, H.; Liu, Z. N.; Zhou, W.; Lin, Q. P.; Jiang, J. Z. Elucidating J-aggregation effect in boosting singlet-oxygen evolution using zirconium-porphyrin frameworks: A comprehensive structural, catalytic, and spectroscopic study. ACS Appl. Mater. Interfaces 2019, 11, 45118–45125.

[19]

Sun, N. N.; Wang, C. M.; Wang, H. L.; Gao, X. W.; Jiang, J. Z. Photonic switching porous organic polymers toward reversible control of heterogeneous photocatalysis. ACS Appl. Mater. Interfaces 2020, 12, 56491–56498.

[20]

Romero, N. A.; Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 2016, 116, 10075–10166.

[21]

Kan, X.; Wang, J. C.; Chen, Z.; Du, J. Q.; Kan, J. L.; Li, W. Y.; Dong, Y. B. Synthesis of metal-free chiral covalent organic framework for visible-light-mediated enantioselective photooxidation in water. J. Am. Chem. Soc. 2022, 144, 6681–6686.

[22]

Sheng, W. L.; Hao, H. M.; Huang, F. W.; Zhang, F. L.; Lang, X. J. 2D Ti-based metal-organic framework photocatalysis for red light-driven selective aerobic oxidation of sulfides. Chem. Eng. J. 2022, 430, 133071.

[23]

Hanikel, N.; Pei, X. K.; Chheda, S.; Lyu, H.; Jeong, W.; Sauer, J.; Gagliardi, L.; Yaghi, O. M. Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting. Science 2021, 374, 454–459.

[24]

Lin, J. B.; Nguyen, T. T. T.; Vaidhyanathan, R.; Burner, J.; Taylor, J. M.; Durekova, H.; Akhtar, F.; Mah, R. K.; Ghaffari-Nik, O.; Marx, S. et al. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science 2021, 374, 1464–1469.

[25]

Wu, M. M.; Zhao, Y.; Zhang, H. T.; Zhu, J.; Ma, Y. F.; Li, C. X.; Zhang, Y. M.; Chen, Y. S. A 2D covalent organic framework with ultra-large interlayer distance as high-rate anode material for lithium-ion batteries. Nano Res. 2022, 15, 9779–9784.

[26]

Gu, C.; Hosono, N.; Zheng, J. J.; Sato, Y.; Kusaka, S.; Sakaki, S.; Kitagawa, S. Design and control of gas diffusion process in a nanoporous soft crystal. Science 2019, 363, 387–391.

[27]

Li, J.; Huang, H. L.; Xue, W. J.; Sun, K.; Song, X. H.; Wu, C. R.; Nie, L.; Li, Y.; Liu, C. Y.; Pan, Y. et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 2021, 4, 719–729.

[28]

Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585.

[29]

Guan, X. Y.; Fang, Q. R.; Yan, Y. S.; Qiu, S. L. Functional regulation and stability engineering of three-dimensional covalent organic frameworks. Acc. Chem. Res. 2022, 55, 1912–1927.

[30]

Slater, A. G.; Cooper, A. I. Function-led design of new porous materials. Science 2015, 348, aaa8075.

[31]

Liu, W. B.; Li, X. K.; Wang, C. M.; Pan, H. H.; Liu, W. P.; Wang, K.; Zeng, Q. D.; Wang, R. M.; Jiang, J. Z. A Scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 17431–17440.

[32]

Sasmal, H. S.; Kumar Mahato, A.; Majumder, P.; Banerjee, R. Landscaping covalent organic framework nanomorphologies. J. Am. Chem. Soc. 2022, 144, 11482–11498.

[33]

Liang, R. R.; Jiang, S. Y.; A, R. H.; Zhao, X. Two-dimensional covalent organic frameworks with hierarchical porosity. Chem. Soc. Rev. 2020, 49, 3920–3951.

[34]

Li, J.; Jing, X. C.; Li, Q. Q.; Li, S. W.; Gao, X.; Feng, X.; Wang, B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 2020, 49, 3565–3604.

[35]

Han, X.; Yuan, C.; Hou, B.; Liu, L. J.; Li, H. Y.; Liu, Y.; Cui, Y. Chiral covalent organic frameworks: Design, synthesis and property. Chem. Soc. Rev. 2020, 49, 6248–6272.

[36]

Wang, Z. F.; Zhang, S. N.; Chen, Y.; Zhang, Z. J.; Ma, S. Q. Covalent organic frameworks for separation applications. Chem. Soc. Rev. 2020, 49, 708–735.

[37]

Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.

[38]

Liu, C.; Jin, Y. C.; Yu, Z. H.; Gong, L.; Wang, H. L.; Yu, B. Q.; Zhang, W.; Jiang, J. Z. Transformation of porous organic cages and covalent organic frameworks with efficient iodine vapor capture performance. J. Am. Chem. Soc. 2022, 144, 12390–12399.

[39]

Guo, M. Y.; Zhang, M. W.; Liu, R. Z.; Zhang, X. W.; Li, G. Z. State-of-the-art advancements in photocatalytic hydrogenation: Reaction mechanism and recent progress in metal-organic framework (MOF)-based catalysts. Adv. Sci. 2022, 9, 2103361.

[40]

Yan, C. X.; Dong, J. Q.; Chen, Y. Z.; Zhou, W. J.; Peng, Y.; Zhang, Y.; Wang, L. N. Organic photocatalysts: From molecular to aggregate level. Nano Res. 2022, 15, 3835–3858.

[41]

Gong, Y. N.; Guan, X. Y.; Jiang, H. L. Covalent organic frameworks for photocatalysis: Synthesis, structural features, fundamentals and performance. Coord. Chem. Rev. 2023, 475, 214889.

[42]

Liu, S. S.; Wang, M. F.; He, Y. Z.; Cheng, Q. Y.; Qian, T.; Yan, C. L. Covalent organic frameworks towards photocatalytic applications: Design principles, achievements, and opportunities. Coord. Chem. Rev. 2023, 475, 214882.

[43]

Lin, R. B.; Chen, B. L. Hydrogen-bonded organic frameworks: Chemistry and functions. Chem 2022, 8, 2114–2135.

[44]

Song, X. Y.; Wang, Y.; Wang, C.; Wang, D.; Zhuang, G. W.; Kirlikovali, K. O.; Li, P.; Farha, O. K. Design rules of hydrogen-bonded organic frameworks with high chemical and thermal stabilities. J. Am. Chem. Soc. 2022, 144, 10663–10687.

[45]

Lin, R. B.; He, Y. B.; Li, P.; Wang, H. L.; Zhou, W.; Chen, B. L. Multifunctional porous hydrogen-bonded organic framework materials. Chem. Soc. Rev. 2019, 48, 1362–1389.

[46]

Hisaki, I.; Xin, C.; Takahashi, K.; Nakamura, T. Designing hydrogen-bonded organic frameworks (HOFs) with permanent porosity. Angew. Chem., Int. Ed. 2019, 58, 11160–11170.

[47]

Lü, J.; Cao, R. Porous organic molecular frameworks with extrinsic porosity: A platform for carbon storage and separation. Angew. Chem., Int. Ed. 2016, 55, 9474–9480.

[48]

Yu, S.; Xing, G. L.; Chen, L. H.; Ben, T.; Su, B. L. Crystalline porous organic salts: From micropore to hierarchical pores. Adv. Mater. 2020, 32, 2003270.

[49]

Li, P. H.; Ryder, M. R.; Stoddart, J. F. Hydrogen-bonded organic frameworks: A rising class of porous molecular materials. Acc. Mater. Res. 2020, 1, 77–87.

[50]

Pulido, A.; Chen, L. J.; Kaczorowski, T.; Holden, D.; Little, M. A.; Chong, S. Y.; Slater, B. J.; McMahon, D. P.; Bonillo, B.; Stackhouse, C. J. et al. Functional materials discovery using energy-structure-function maps. Nature 2017, 543, 657–664.

[51]

Nugent, P. S.; Rhodus, V. L.; Pham, T.; Forrest, K.; Wojtas, L.; Space, B.; Zaworotko, M. J. A robust molecular porous material with high CO2 uptake and selectivity. J. Am. Chem. Soc. 2013, 135, 10950–10953.

[52]

Mastalerz, M.; Oppel, I. M. Rational construction of an extrinsic porous molecular crystal with an extraordinary high specific surface area. Angew. Chem., Int. Ed. 2012, 51, 5252–5255.

[53]

Kang, D. W.; Kang, M.; Kim, H.; Choe, J. H.; Kim, D. W.; Park, J. R.; Lee, W. R.; Moon, D.; Hong, C. S. A hydrogen-bonded organic framework (HOF) with type IV NH3 adsorption behavior. Angew. Chem., Int. Ed. 2019, 58, 16152–16155.

[54]

Li, P. H.; Li, P.; Ryder, M. R.; Liu, Z. C.; Stern, C. L.; Farha, O. K.; Stoddart, J. F. Interpenetration isomerism in triptycene-based hydrogen-bonded organic frameworks. Angew. Chem., Int. Ed. 2019, 58, 1664–1669.

[55]

Hu, F. L.; Liu, C. P.; Wu, M. Y.; Pang, J. D.; Jiang, F. L.; Yuan, D. Q.; Hong, M. C. An ultrastable and easily regenerated hydrogen-bonded organic molecular framework with permanent porosity. Angew. Chem., Int. Ed. 2017, 56, 2101–2104.

[56]

Liu, Y.; Xu, Q. Q.; Chen, L. H.; Song, C. H.; Yang, Q. W.; Zhang, Z. G.; Lu, D.; Yang, Y. W.; Ren, Q. L.; Bao, Z. B. Hydrogen-bonded metal-nucleobase frameworks for highly selective capture of ethane/propane from methane and methane/nitrogen separation. Nano Res. 2022, 15, 7695–7702.

[57]

Wang, Y.; Hou, X. D.; Liu, C. Y.; Albolkany, M. K.; Wang, Y.; Wu, N. N.; Chen, C. H.; Liu, B. Combustible ice mimicking behavior of hydrogen-bonded organic framework at ambient condition. Nat. Commun. 2020, 11, 3124.

[58]

Chen, T. H.; Popov, I.; Kaveevivitchai, W.; Chuang, Y. C.; Chen, Y. S.; Daugulis, O.; Jacobson, A. J.; Miljanić, O. Š. Thermally robust and porous noncovalent organic framework with high affinity for fluorocarbons and CFCs. Nat. Commun. 2014, 5, 5131.

[59]

Hisaki, I.; Suzuki, Y.; Gomez, E.; Ji, Q.; Tohnai, N.; Nakamura, T.; Douhal, A. Acid responsive hydrogen-bonded organic frameworks. J. Am. Chem. Soc. 2019, 141, 2111–2121.

[60]

Wang, B.; He, R.; Xie, L. H.; Lin, Z. J.; Zhang, X.; Wang, J.; Huang, H. L.; Zhang, Z. J.; Schanze, K. S.; Zhang, J. et al. Microporous hydrogen-bonded organic framework for highly efficient turn-up fluorescent sensing of aniline. J. Am. Chem. Soc. 2020, 142, 12478–12485.

[61]

di Nunzio, M. R.; Hisaki, I.; Douhal, A. HOFs under light: Relevance to photon-based science and applications. J. Photochem. Photobiol. C:Photochem. Rev. 2021, 47, 100418.

[62]

Gong, W.; Chu, D. D.; Jiang, H.; Chen, X.; Cui, Y.; Liu, Y. Permanent porous hydrogen-bonded frameworks with two types of Brønsted acid sites for heterogeneous asymmetric catalysis. Nat. Commun. 2019, 10, 600.

[63]

Han, B.; Wang, H. L.; Wang, C. M.; Wu, H.; Zhou, W.; Chen, B. L.; Jiang, J. Z. Postsynthetic metalation of a robust hydrogen-bonded organic framework for heterogeneous catalysis. J. Am. Chem. Soc. 2019, 141, 8737–8740.

[64]

Yu, B. Q.; Li, L. J.; Liu, S. S.; Wang, H. L.; Liu, H. Y.; Lin, C. X.; Liu, C.; Wu, H.; Zhou, W.; Li, X. Y. et al. Robust biological hydrogen-bonded organic framework with post-functionalized rhenium(I) sites for efficient heterogeneous visible-light-driven CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 8983–8989.

[65]

Yu, B. Q.; Meng, T.; Ding, X.; Liu, X. L.; Wang, H. L.; Chen, B. T.; Zheng, T. Y.; Li, W.; Zeng, Q. D.; Jiang, J. Z. Hydrogen-bonded organic framework ultrathin nanosheets for efficient visible-light photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2022, 61, e202211482.

[66]

Yin, Q.; Alexandrov, E. V.; Si, D. H.; Huang, Q. Q.; Fang, Z. B.; Zhang, Y.; Zhang, A. A.; Qin, W. K.; Li, Y. L.; Liu, T. F. et al. Metallization-prompted robust porphyrin-based hydrogen-bonded organic frameworks for photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2022, 61, e202115854.

[67]

Liang, W. B.; Carraro, F.; Solomon, M. B.; Bell, S. G.; Amenitsch, H.; Sumby, C. J.; White, N. G.; Falcaro, P.; Doonan, C. J. Enzyme encapsulation in a porous hydrogen-bonded organic framework. J. Am. Chem. Soc. 2019, 141, 14298–14305.

[68]

Yin, Q.; Zhao, P.; Sa, R. J.; Chen, G. C.; Lü, J.; Liu, T. F.; Cao, R. An ultra-robust and crystalline redeemable hydrogen-bonded organic framework for synergistic chemo-photodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 7691–7696.

[69]

Zhang, H. C.; Yu, D.; Liu, S. T.; Liu, C.; Liu, Z. Q.; Ren, J. S.; Qu, X. G. NIR-II hydrogen-bonded organic frameworks (HOFs) used for target-specific amyloid-β photooxygenation in an Alzheimer's disease model. Angew. Chem, Int. Ed. 2022, 61, e202109068.

[70]

Yu, D. Q.; Zhang, H. C.; Liu, Z. Q.; Liu, C.; Du, X. B.; Ren, J. S.; Qu, X. G. Hydrogen-bonded organic framework (HOF)-based single-neural stem cell encapsulation and transplantation to remodel impaired neural networks. Angew. Chem., Int. Ed. 2022, 61, e202201485.

[71]

Tholen, P.; Peeples, C. A.; Schaper, R.; Bayraktar, C.; Erkal, T. S.; Ayhan, M. M.; Çoşut, B.; Beckmann, J.; Yazaydin, A. O.; Wark, M. et al. Semiconductive microporous hydrogen-bonded organophosphonic acid frameworks. Nat. Commun. 2020, 11, 3180.

[72]

Wang, Y. J.; Yin, J. B.; Liu, D.; Gao, C. Q.; Kang, Z. X.; Wang, R. M.; Sun, D. F.; Jiang, J. Z. Guest-tuned proton conductivity of a porphyrinylphosphonate-based hydrogen-bonded organic framework. J. Mater. Chem. A 2021, 9, 2683–2688.

[73]

Xing, G. L.; Yan, T. T.; Das, S.; Ben, T.; Qiu, S. L. Synthesis of crystalline porous organic salts with high proton conductivity. Angew. Chem., Int. Ed. 2018, 57, 5345–5349.

[74]

Karmakar, A.; Illathvalappil, R.; Anothumakkool, B.; Sen, A.; Samanta, P.; Desai, A. V.; Kurungot, S.; Ghosh, S. K. Hydrogen-bonded organic frameworks (HOFs): A new class of porous crystalline proton-conducting materials. Angew. Chem., Int. Ed. 2016, 55, 10667–10671.

[75]

Wu, Y. L.; Horwitz, N. E.; Chen, K. S.; Gomez-Gualdron, D. A.; Luu, N. S.; Ma, L.; Wang, T. C.; Hersam, M. C.; Hupp, J. T.; Farha, O. K. et al. G-quadruplex organic frameworks. Nat. Chem. 2017, 9, 466–472.

[76]

Wu, Y. L.; Bobbitt, N. S.; Logsdon, J. L.; Powers-Riggs, N. E.; Nelson, J. N.; Liu, X. L.; Wang, T. C.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. et al. Tunable crystallinity and charge transfer in two-dimensional G-quadruplex organic frameworks. Angew. Chem., Int. Ed. 2018, 57, 3985–3989.

[77]

Wade, C. R.; Li, M. Y.; Dincă, M. Facile deposition of multicolored electrochromic metal-organic framework thin films. Angew. Chem., Int. Ed. 2013, 52, 13377–13381.

[78]

Wang, L.; Yang, L. X.; Gong, L. L.; Krishna, R.; Gao, Z.; Tao, Y.; Yin, W. H.; Xu, Z. Z.; Luo, F. Constructing redox-active microporous hydrogen-bonded organic framework by imide-functionalization: Photochromism, electrochromism, and selective adsorption of C2H2 over CO2. Chem. Eng. J. 2020, 383, 123117.

[79]

Sun, N. N.; Qi, D. D.; Jin, Y. C.; Wang, H. L.; Wang, C. M.; Qu, C.; Liu, J. M.; Jin, Y. H.; Zhang, W.; Jiang, J. Z. Porous pyrene organic cage with unusual absorption bathochromic-shift enables visible light photocatalysis. CCS Chem. 2021, 4, 2588–2596.

[80]

Kehe K.; Szinicz L. Medical aspects of sulphur mustard poisoning. Toxicology 2005, 214, 198–209.

Nano Research
Pages 8809-8816
Cite this article:
Zhao H, Zhou Z, Feng X, et al. Hydrogen-bonded organic framework for red light-mediated photocatalysis. Nano Research, 2023, 16(7): 8809-8816. https://doi.org/10.1007/s12274-023-5543-z
Topics:

946

Views

13

Crossref

12

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 05 December 2022
Revised: 20 January 2023
Accepted: 02 February 2023
Published: 21 March 2023
© Tsinghua University Press 2023
Return