Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Acute kidney injury (AKI) is a heterogeneous clinical complication with no existing definite or particular therapies. Therefore, molecular mechanisms and approaches for treating acute kidney injury are in urgent need. Herein, we demonstrated that dexrazoxane (DXZ), a U.S. Food and Drug Administration (FDA)-approved cardioprotective drug, can both functionally and histologically attenuate cisplatin or ischemia-reperfusion injury-induced AKI in vitro and in vivo via inhibiting ferroptosis specifically. This effect is characterized by decreasing lipid peroxidation, shown by the biomarker of oxidative stress 4-hydroxynonenal (HNE) and prostaglandinendoperoxide synthase 2 (Ptgs2), while reversing the downregulation of glutathione peroxidase 4 (GPX4) and ferritin 1 (FTH-1). Mechanistically, the results revealed that DXZ targeted at the renal tubule significantly inhibits ferroptosis by suppressing α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD). Furthermore, the conjugation of dexrazoxane and polysialic acid (DXZ-PSA) is specifically designed and utilized to enhance the therapeutic effect of DXZ by long-term effect in the kidney, especially retention and targeting in the renal tubules. This study provides a novel therapeutic approach and mechanistic insight for AKI by inhibiting ferroptosis through a new type drug DXZ-PSA with the enhanced renal distribution.
Bellomo, R.; Kellum, J. A.; Ronco, C. Acute kidney injury. Lancet 2012, 380, 756–766.
Kellum, J. A.; Prowle, J. R. Paradigms of acute kidney injury in the intensive care setting. Nat. Rev. Nephrol. 2018, 14, 217–230.
Kaushal, G. P.; Shah, S. V. Challenges and advances in the treatment of AKI. J. Am. Soc. Nephrol. 2014, 25, 877–883.
Xu, Y. F.; Ma, H. B.; Shao, J.; Wu, J. F.; Zhou, L. Y.; Zhang, Z. R.; Wang, Y. Z.; Huang, Z.; Ren, J. M.; Liu, S. H. et al. A role for tubular necroptosis in cisplatin-induced AKI. J. Am. Soc. Nephrol. 2015, 26, 2647–2658.
Linkermann, A.; Skouta, R.; Himmerkus, N.; Mulay, S. R.; Dewitz, C.; De Zen, F.; Prokai, A.; Zuchtriegel, G.; Krombach, F.; Welz, P. S. et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl. Acad. Sci. USA 2014, 111, 16836–16841.
Stockwell, B. R.; Angeli, J. P. F.; Bayir, H.; Bush, A. I.; Conrad, M.; Dixon, S. J.; Fulda, S.; Gascón, S.; Hatzios, S. K.; Kagan, V. E. et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017, 171, 273–285.
Hu, Z. X.; Zhang, H.; Yi, B.; Yang, S. K.; Liu, J.; Hu, J.; Wang, J. W.; Cao, K.; Zhang, W. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis. Cell Death Dis. 2020, 11, 73.
Wang, Y.; Quan, F.; Cao, Q. H.; Lin, Y. T.; Yue, C. X.; Bi, R.; Cui, X. M.; Yang, H. B.; Yang, Y.; Birnbaumer, L. et al. Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J. Adv. Res. 2020, 28, 231–243.
Chen, C. A.; Wang, D. K.; Yu, Y. Y.; Zhao, T. Y.; Min, N. N.; Wu, Y.; Kang, L. C.; Zhao, Y.; Du, L. F.; Zhang, M. Z. et al. Legumain promotes tubular ferroptosis by facilitating chaperone-mediated autophagy of GPX4 in AKI. Cell Death Dis. 2021, 12, 65.
Sharma, S.; Leaf, D. E. Iron chelation as a potential therapeutic strategy for AKI prevention. J. Am. Soc. Nephrol. 2019, 30, 2060–2071.
Martines, A. M. F.; Masereeuw, R.; Tjalsma, H.; Hoenderop, J. G.; Wetzels, J. F. M.; Swinkels, D. W. Iron metabolism in the pathogenesis of iron-induced kidney injury. Nat. Rev. Nephrol. 2013, 9, 385–398.
Fang, X. X.; Wang, H.; Han, D.; Xie, E. J.; Yang, X.; Wei, J. Y.; Gu, S. S.; Gao, F.; Zhu, N. L.; Yin, X. J. et al. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl. Acad. Sci. USA 2019, 116, 2672–2680.
Karlstetter, M.; Kopatz, J.; Aslanidis, A.; Shahraz, A.; Caramoy, A.; Linnartz-Gerlach, B.; Lin, Y. C.; Lückoff, A.; Fauser, S.; Düker, K. et al. Polysialic acid blocks mononuclear phagocyte reactivity, inhibits complement activation, and protects from vascular damage in the retina. EMBO Mol. Med. 2017, 9, 154–166.
Li, J. H.; Tang, Y.; Tang, P. M. K.; Lv, J.; Huang, X. R.; Carlsson-Skwirut, C.; Da Costa, L.; Aspesi, A.; Fröhlich, S.; Szczęśniak, P. et al. Blocking macrophage migration inhibitory factor protects against cisplatin-induced acute kidney injury in mice. Mol. Ther. 2018, 26, 2523–2532.
Skrypnyk, N. I.; Harris, R. C.; De Caestecker, M. D. Ischemia-reperfusion model of acute kidney injury and post injury fibrosis in mice. J. Vis. Exp. 2013, 50495.
Li, W.; Wang, C. S.; Lv, H.; Wang, Z. H.; Zhao, M.; Liu, S. Y.; Gou, L. P.; Zhou, Y.; Li, J.; Zhang, J. Y. et al. A DNA nanoraft-based cytokine delivery platform for alleviation of acute kidney injury. ACS Nano 2021, 15, 18237–18249.
Xie, X. S.; Zhang, Y. J.; Su, X. W.; Wang, J. N.; Yao, X.; Lv, D.; Zhou, Q.; Mao, J. H.; Chen, J. H.; Han, F. et al. Targeting iron metabolism using gallium nanoparticles to suppress ferroptosis and effectively mitigate acute kidney injury. Nano Res. 2022, 15, 6315–6327.
Prus, E.; Fibach, E. Flow cytometry measurement of the labile iron pool in human hematopoietic cells. Cytometry A 2008, 73, 22–27.
Gao, M. H.; Yi, J. M.; Zhu, J. J.; Minikes, A. M.; Monian, P.; Thompson, C. B.; Jiang, X. J. Role of Mitochondria in ferroptosis. Mol. Cell 2019, 73, 354–363.e3.
Ingold, I.; Berndt, C.; Schmitt, S.; Doll, S.; Poschmann, G.; Buday, K.; Roveri, A.; Peng, X. X.; Freitas, F. P.; Seibt, T. et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 2018, 172, 409–422.e21.
Gao, M. H.; Monian, P.; Pan, Q. H.; Zhang, W.; Xiang, J.; Jiang, X. J. Ferroptosis is an autophagic cell death process. Cell Res. 2016, 26, 1021–1032.
Tian, Y.; Lu, J.; Hao, X. Q.; Li, H.; Zhang, G. Y.; Liu, X. L.; Li, X. R.; Zhao, C. P.; Kuang, W. H.; Chen, D. F. et al. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease. Neurotherapeutics 2020, 17, 1796–1812.
Van Biesen, W.; Vanholder, R.; Lameire, N. Defining acute renal failure: RIFLE and beyond. Clin. J. Am. Soc. Nephrol. 2006, 1, 1314–1319.
Bellomo, R.; Kellum, J. A.; Ronco, C. Defining and classifying acute renal failure: From advocacy to consensus and validation of the RIFLE criteria. Intensive Care Med. 2007, 33, 409–413.
Bauckman, K. A.; Mysorekar, I. U. Ferritinophagy drives uropathogenic Escherichia coli persistence in bladder epithelial cells. Autophagy 2016, 12, 850–863.
Wang, H. Y.; Cheng, Y.; Mao, C.; Liu, S.; Xiao, D. S.; Huang, J.; Tao, Y. G. Emerging mechanisms and targeted therapy of ferroptosis in cancer. Mol. Ther. 2021, 29, 2185–2208.
Yang, W. S.; Stockwell, B. R. Ferroptosis: Death by lipid peroxidation. Trends Cell Biol 2016, 26, 165–176.
Maiorino, M.; Conrad, M.; Ursini, F. GPx4, lipid peroxidation, and cell death: Discoveries, rediscoveries, and open issues. Antioxid. Redox Signal. 2018, 29, 61–74.
Mühlenhoff, M.; Eckhardt, M.; Gerardy-Schahn, R. Polysialic acid: Three-dimensional structure, biosynthesis and function. Curr. Opin. Struct. Biol. 1998, 8, 558–564.
Troy, F. A. Polysialylation: From bacteria to brains. Glycobiology 1992, 2, 5–23.
Katsyuba, E.; Mottis, A.; Zietak, M.; De Franco, F.; Van Der Velpen, V.; Gariani, K.; Ryu, D.; Cialabrini, L.; Matilainen, O.; Liscio, P. et al. De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature 2018, 563, 354–359.
Li, T. F.; Walker, A. L.; Iwaki, H.; Hasegawa, Y.; Liu, A. M. Kinetic and spectroscopic characterization of ACMSD from Pseudomonas fluorescens reveals a pentacoordinate mononuclear metallocofactor. J. Am. Chem. Soc. 2005, 127, 12282–12290.
Ooi, A. Advances in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) research. Semin. Cancer Biol. 2020, 61, 158–166.
Shan, L.; Xu, X. M.; Zhang, J.; Cai, P.; Gao, H.; Lu, Y. J.; Shi, J. G.; Guo, Y. L.; Su, Y. Increased hemoglobin and heme in MALDI-TOF MS analysis induce ferroptosis and promote degeneration of herniated human nucleus pulposus. Mol. Med. 2021, 27, 103.
Liu, P. F.; Wu, D.; Duan, J. Y.; Xiao, H. X.; Zhou, Y. L.; Zhao, L.; Feng, Y. T. NRF2 regulates the sensitivity of human NSCLC cells to cystine deprivation-induced ferroptosis via FOCAD-FAK signaling pathway. Redox Biol. 2020, 37, 101702.