AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Renal tubule-targeted dexrazoxane suppresses ferroptosis in acute kidney injury by inhibiting ACMSD

Yunjing Zhang1,2,§Jicheng Wu2,3,§Quanlin An4Huanhuan Zhu5,6Xinwan Su1Ying Wang1Xishao Xie5,6Jian Zhang5,6Xi Yao5,6Chunhua Weng5Shi Feng5Jianhua Mao7Xianghui Fu8Fei Han5( )Xin Cao4( )Ben Wang2,3( )Weiqiang Lin1( )
International Institute of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua 322000, China
Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai 200032, China
Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou 310003, China
Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou 310000, China
Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China

§ Yunjing Zhang and Jicheng Wu contributed equally to this work.

Show Author Information

Graphical Abstract

Renal tubule-targeted dexrazoxane (DXZ) inhibits ferroptosis by suppressing the catalytic activity or transcription of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) and Fenton reaction, thus inhibiting the mitochondrial tricarboxylic acid (TCA) cycle and reactive oxygen species (ROS) production and ultimately suppressing ferroptosis.

Abstract

Acute kidney injury (AKI) is a heterogeneous clinical complication with no existing definite or particular therapies. Therefore, molecular mechanisms and approaches for treating acute kidney injury are in urgent need. Herein, we demonstrated that dexrazoxane (DXZ), a U.S. Food and Drug Administration (FDA)-approved cardioprotective drug, can both functionally and histologically attenuate cisplatin or ischemia-reperfusion injury-induced AKI in vitro and in vivo via inhibiting ferroptosis specifically. This effect is characterized by decreasing lipid peroxidation, shown by the biomarker of oxidative stress 4-hydroxynonenal (HNE) and prostaglandinendoperoxide synthase 2 (Ptgs2), while reversing the downregulation of glutathione peroxidase 4 (GPX4) and ferritin 1 (FTH-1). Mechanistically, the results revealed that DXZ targeted at the renal tubule significantly inhibits ferroptosis by suppressing α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD). Furthermore, the conjugation of dexrazoxane and polysialic acid (DXZ-PSA) is specifically designed and utilized to enhance the therapeutic effect of DXZ by long-term effect in the kidney, especially retention and targeting in the renal tubules. This study provides a novel therapeutic approach and mechanistic insight for AKI by inhibiting ferroptosis through a new type drug DXZ-PSA with the enhanced renal distribution.

Electronic Supplementary Material

Download File(s)
12274_2023_5547_MOESM1_ESM.pdf (3.7 MB)

References

[1]

Bellomo, R.; Kellum, J. A.; Ronco, C. Acute kidney injury. Lancet 2012, 380, 756–766.

[2]

Kellum, J. A.; Prowle, J. R. Paradigms of acute kidney injury in the intensive care setting. Nat. Rev. Nephrol. 2018, 14, 217–230.

[3]

Kaushal, G. P.; Shah, S. V. Challenges and advances in the treatment of AKI. J. Am. Soc. Nephrol. 2014, 25, 877–883.

[4]

Xu, Y. F.; Ma, H. B.; Shao, J.; Wu, J. F.; Zhou, L. Y.; Zhang, Z. R.; Wang, Y. Z.; Huang, Z.; Ren, J. M.; Liu, S. H. et al. A role for tubular necroptosis in cisplatin-induced AKI. J. Am. Soc. Nephrol. 2015, 26, 2647–2658.

[5]

Linkermann, A.; Skouta, R.; Himmerkus, N.; Mulay, S. R.; Dewitz, C.; De Zen, F.; Prokai, A.; Zuchtriegel, G.; Krombach, F.; Welz, P. S. et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl. Acad. Sci. USA 2014, 111, 16836–16841.

[6]

Stockwell, B. R.; Angeli, J. P. F.; Bayir, H.; Bush, A. I.; Conrad, M.; Dixon, S. J.; Fulda, S.; Gascón, S.; Hatzios, S. K.; Kagan, V. E. et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017, 171, 273–285.

[7]

Hu, Z. X.; Zhang, H.; Yi, B.; Yang, S. K.; Liu, J.; Hu, J.; Wang, J. W.; Cao, K.; Zhang, W. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis. Cell Death Dis. 2020, 11, 73.

[8]

Wang, Y.; Quan, F.; Cao, Q. H.; Lin, Y. T.; Yue, C. X.; Bi, R.; Cui, X. M.; Yang, H. B.; Yang, Y.; Birnbaumer, L. et al. Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J. Adv. Res. 2020, 28, 231–243.

[9]

Chen, C. A.; Wang, D. K.; Yu, Y. Y.; Zhao, T. Y.; Min, N. N.; Wu, Y.; Kang, L. C.; Zhao, Y.; Du, L. F.; Zhang, M. Z. et al. Legumain promotes tubular ferroptosis by facilitating chaperone-mediated autophagy of GPX4 in AKI. Cell Death Dis. 2021, 12, 65.

[10]

Sharma, S.; Leaf, D. E. Iron chelation as a potential therapeutic strategy for AKI prevention. J. Am. Soc. Nephrol. 2019, 30, 2060–2071.

[11]

Martines, A. M. F.; Masereeuw, R.; Tjalsma, H.; Hoenderop, J. G.; Wetzels, J. F. M.; Swinkels, D. W. Iron metabolism in the pathogenesis of iron-induced kidney injury. Nat. Rev. Nephrol. 2013, 9, 385–398.

[12]

Fang, X. X.; Wang, H.; Han, D.; Xie, E. J.; Yang, X.; Wei, J. Y.; Gu, S. S.; Gao, F.; Zhu, N. L.; Yin, X. J. et al. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl. Acad. Sci. USA 2019, 116, 2672–2680.

[13]
Eneh, C.; Lekkala, M. R. Dexrazoxane; StatPearls Publishing: Treasure Island, 2022.
[14]

Karlstetter, M.; Kopatz, J.; Aslanidis, A.; Shahraz, A.; Caramoy, A.; Linnartz-Gerlach, B.; Lin, Y. C.; Lückoff, A.; Fauser, S.; Düker, K. et al. Polysialic acid blocks mononuclear phagocyte reactivity, inhibits complement activation, and protects from vascular damage in the retina. EMBO Mol. Med. 2017, 9, 154–166.

[15]

Li, J. H.; Tang, Y.; Tang, P. M. K.; Lv, J.; Huang, X. R.; Carlsson-Skwirut, C.; Da Costa, L.; Aspesi, A.; Fröhlich, S.; Szczęśniak, P. et al. Blocking macrophage migration inhibitory factor protects against cisplatin-induced acute kidney injury in mice. Mol. Ther. 2018, 26, 2523–2532.

[16]

Skrypnyk, N. I.; Harris, R. C.; De Caestecker, M. D. Ischemia-reperfusion model of acute kidney injury and post injury fibrosis in mice. J. Vis. Exp. 2013, 50495.

[17]

Li, W.; Wang, C. S.; Lv, H.; Wang, Z. H.; Zhao, M.; Liu, S. Y.; Gou, L. P.; Zhou, Y.; Li, J.; Zhang, J. Y. et al. A DNA nanoraft-based cytokine delivery platform for alleviation of acute kidney injury. ACS Nano 2021, 15, 18237–18249.

[18]

Xie, X. S.; Zhang, Y. J.; Su, X. W.; Wang, J. N.; Yao, X.; Lv, D.; Zhou, Q.; Mao, J. H.; Chen, J. H.; Han, F. et al. Targeting iron metabolism using gallium nanoparticles to suppress ferroptosis and effectively mitigate acute kidney injury. Nano Res. 2022, 15, 6315–6327.

[19]

Prus, E.; Fibach, E. Flow cytometry measurement of the labile iron pool in human hematopoietic cells. Cytometry A 2008, 73, 22–27.

[20]

Gao, M. H.; Yi, J. M.; Zhu, J. J.; Minikes, A. M.; Monian, P.; Thompson, C. B.; Jiang, X. J. Role of Mitochondria in ferroptosis. Mol. Cell 2019, 73, 354–363.e3.

[21]

Ingold, I.; Berndt, C.; Schmitt, S.; Doll, S.; Poschmann, G.; Buday, K.; Roveri, A.; Peng, X. X.; Freitas, F. P.; Seibt, T. et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 2018, 172, 409–422.e21.

[22]

Gao, M. H.; Monian, P.; Pan, Q. H.; Zhang, W.; Xiang, J.; Jiang, X. J. Ferroptosis is an autophagic cell death process. Cell Res. 2016, 26, 1021–1032.

[23]

Tian, Y.; Lu, J.; Hao, X. Q.; Li, H.; Zhang, G. Y.; Liu, X. L.; Li, X. R.; Zhao, C. P.; Kuang, W. H.; Chen, D. F. et al. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease. Neurotherapeutics 2020, 17, 1796–1812.

[24]

Van Biesen, W.; Vanholder, R.; Lameire, N. Defining acute renal failure: RIFLE and beyond. Clin. J. Am. Soc. Nephrol. 2006, 1, 1314–1319.

[25]

Bellomo, R.; Kellum, J. A.; Ronco, C. Defining and classifying acute renal failure: From advocacy to consensus and validation of the RIFLE criteria. Intensive Care Med. 2007, 33, 409–413.

[26]

Bauckman, K. A.; Mysorekar, I. U. Ferritinophagy drives uropathogenic Escherichia coli persistence in bladder epithelial cells. Autophagy 2016, 12, 850–863.

[27]
Yoshino, J. ACMSD: A novel target for modulating NAD+ homeostasis. Trends Endocrinol. Metab. 2019, 30, 229–232.
[28]

Wang, H. Y.; Cheng, Y.; Mao, C.; Liu, S.; Xiao, D. S.; Huang, J.; Tao, Y. G. Emerging mechanisms and targeted therapy of ferroptosis in cancer. Mol. Ther. 2021, 29, 2185–2208.

[29]

Yang, W. S.; Stockwell, B. R. Ferroptosis: Death by lipid peroxidation. Trends Cell Biol 2016, 26, 165–176.

[30]
Cao, H. M.; Cheng, Y. Q.; Gao, H. Q.; Zhuang, J.; Zhang, W. G.; Bian, Q.; Wang, F.; Du, Y.; Li, Z. J.; Kong, D. L. et al. In vivo tracking of mesenchymal stem cell-derived extracellular vesicles improving mitochondrial function in renal ischemia-reperfusion injury. ACS Nano 2020, 14, 4014–4026.
[31]

Maiorino, M.; Conrad, M.; Ursini, F. GPx4, lipid peroxidation, and cell death: Discoveries, rediscoveries, and open issues. Antioxid. Redox Signal. 2018, 29, 61–74.

[32]

Mühlenhoff, M.; Eckhardt, M.; Gerardy-Schahn, R. Polysialic acid: Three-dimensional structure, biosynthesis and function. Curr. Opin. Struct. Biol. 1998, 8, 558–564.

[33]

Troy, F. A. Polysialylation: From bacteria to brains. Glycobiology 1992, 2, 5–23.

[34]

Katsyuba, E.; Mottis, A.; Zietak, M.; De Franco, F.; Van Der Velpen, V.; Gariani, K.; Ryu, D.; Cialabrini, L.; Matilainen, O.; Liscio, P. et al. De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature 2018, 563, 354–359.

[35]

Li, T. F.; Walker, A. L.; Iwaki, H.; Hasegawa, Y.; Liu, A. M. Kinetic and spectroscopic characterization of ACMSD from Pseudomonas fluorescens reveals a pentacoordinate mononuclear metallocofactor. J. Am. Chem. Soc. 2005, 127, 12282–12290.

[36]

Ooi, A. Advances in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) research. Semin. Cancer Biol. 2020, 61, 158–166.

[37]

Shan, L.; Xu, X. M.; Zhang, J.; Cai, P.; Gao, H.; Lu, Y. J.; Shi, J. G.; Guo, Y. L.; Su, Y. Increased hemoglobin and heme in MALDI-TOF MS analysis induce ferroptosis and promote degeneration of herniated human nucleus pulposus. Mol. Med. 2021, 27, 103.

[38]

Liu, P. F.; Wu, D.; Duan, J. Y.; Xiao, H. X.; Zhou, Y. L.; Zhao, L.; Feng, Y. T. NRF2 regulates the sensitivity of human NSCLC cells to cystine deprivation-induced ferroptosis via FOCAD-FAK signaling pathway. Redox Biol. 2020, 37, 101702.

Nano Research
Pages 9701-9714
Cite this article:
Zhang Y, Wu J, An Q, et al. Renal tubule-targeted dexrazoxane suppresses ferroptosis in acute kidney injury by inhibiting ACMSD. Nano Research, 2023, 16(7): 9701-9714. https://doi.org/10.1007/s12274-023-5547-8
Topics:

704

Views

4

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 10 November 2022
Revised: 03 February 2023
Accepted: 06 February 2023
Published: 18 April 2023
© Tsinghua University Press 2023
Return