Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Plasmonic nanostructures have been proved effective not only in catalyzing chemical reactions, but also in improving the activity of non-plasmonic photocatalysts. It is essential to reveal the synergy between the plasmonic structure and the non-plasmonic metal photocatalyst for expounding the underlying mechanism of plasmon-enhanced catalysis. Herein, the enhancement of resazurin reduction at the heterostructure of silver nanowire (AgNW) and palladium nanoparticles (PdNPs) is observed in situ by single-molecule fluorescence microscopy. The catalysis mapping results around single AgNW suggest that the catalytic activity of PdNPs is enhanced for ~ 20 times due to the excitation of localized surface plasmon resonance (LSPR) in the vicinity of the AgNW. This catalysis enhancement is also highly related to the wavelength and polarization of the excitation light. In addition, the palladium catalysis is further enhanced by ~ 10 times in the vicinity of a roughened AgNW or a AgNW–AgNW nanogap because of the improvement of catalytic hotspots. These findings clarify the contribution of plasmon excitation in palladium catalysis at microscopic scale, which will help to deepen the understanding of the plasmon-enhanced photocatalysis and provide a guideline for developing highly efficient plasmon-based photocatalysts.
Creel, E. B.; Corson, E. R.; Eichhorn, J.; Kostecki, R.; Urban, J. J.; McCloskey, B. D. Directing selectivity of electrochemical carbon dioxide reduction using plasmonics. ACS Energy Lett. 2019, 4, 1098–1105.
Quiroz, J.; Barbosa, E. C. M.; Araujo, T. P.; Fiorio, J. L.; Wang, Y. C.; Zou, Y. C.; Mou, T.; Alves, T. V.; de Oliveira, D. C.; Wang, B. et al. Controlling reaction selectivity over hybrid plasmonic nanocatalysts. Nano Lett. 2018, 18, 7289–7297.
Gellé, A.; Jin, T.; de la Garza, L.; Price, G. D.; Besteiro, L. V.; Moores, A. Applications of plasmon-enhanced nanocatalysis to organic transformations. Chem. Rev. 2020, 120, 986–1041.
Ninakanti, R.; Dingenen, F.; Borah, R.; Peeters, H.; Verbruggen, S. W. Plasmonic hybrid nanostructures in photocatalysis: Structures, mechanisms, and applications. Top. Curr. Chem. 2022, 380, 40.
Bayles, A.; Tian, S.; Zhou, J. Y.; Yuan, L.; Yuan, Y. G.; Jacobson, C. R.; Farr, C.; Zhang, M.; Swearer, D. F.; Solti, D. et al. Al@TiO2 core–shell nanoparticles for plasmonic photocatalysis. ACS Nano 2022, 16, 5839–5850.
Mateo, D.; Cerrillo, J. L.; Durini, S.; Gascon, J. Fundamentals and applications of photo-thermal catalysis. Chem. Soc. Rev. 2021, 50, 2173–2210.
Dhiman, M. Plasmonic nanocatalysis for solar energy harvesting and sustainable chemistry. J. Mater. Chem. A 2020, 8, 10074–10095.
Linic, S.; Chavez, S.; Elias, R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat. Mater. 2021, 20, 916–924.
Wang, Y. C.; Zavabeti, A.; Haque, F.; Zhang, B. Y.; Yao, Q. F.; Chen, L.; Chen, D. H.; Hu, Y. H.; Pillai, N.; Liu, Y. K. et al. Plasmon-induced long-lived hot electrons in degenerately doped molybdenum oxides for visible-light-driven photochemical reactions. Mater. Today 2022, 55, 21–28.
Wy, Y.; Jung, H.; Hong, J. W.; Han, S. W. Exploiting plasmonic hot spots in Au-based nanostructures for sensing and photocatalysis. Acc. Chem. Res. 2022, 55, 831–843.
Li, C. P.; Wang, P.; Tian, Y.; Xu, X. L.; Hou, H.; Wang, M. M.; Qi, G. H.; Jin, Y. D. Long-range plasmon field and plasmoelectric effect on catalysis revealed by shell-thickness-tunable pinhole-free Au@SiO2 core–shell nanoparticles: A case study of p-nitrophenol reduction. ACS Catal. 2017, 7, 5391–5398.
Kim, Y.; Smith, J. G.; Jain, P. K. Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles. Nat. Chem. 2018, 10, 763–769.
Zhao, L. B.; Liu, X. X.; Zhang, M.; Liu, Z. F.; Wu, D. Y.; Tian, Z. Q. Surface plasmon catalytic aerobic oxidation of aromatic amines in metal/molecule/metal junctions. J. Phys. Chem. C 2016, 120, 944–955.
Chen, T.; Tong, F. X.; Enderlein, J.; Zheng, Z. K. Plasmon-driven modulation of reaction pathways of individual Pt-modified Au nanorods. Nano Lett. 2020, 20, 3326–3330.
Han, S.; Mullins, C. B. Catalytic reactions on Pd-Au bimetallic model catalysts. Acc. Chem. Res. 2021, 54, 379–387.
Zhang, C.; Wang, K. W.; Xie, K. F.; Han, X. Q.; Ma, W. G.; Li, X. G.; Teng, G. X. Controllable preparation of hierarchical MnCo bimetallic photocatalyst and the effect of atomic ratio on its photocatalytic activity. Chem. Eng. J. 2022, 446, 136907.
Kifle, G. A.; Huang, Y.; Xiang, M. H.; Wang, W. B.; Wang, C.; Li, C. Y.; Li, H. Heterogeneous activation of peroxygens by iron-based bimetallic nanostructures for the efficient remediation of contaminated water. A review. Chem. Eng. J. 2022, 442, 136187.
Zhang, J. K.; Zheng, X. H.; Yu, W. L.; Feng, X.; Qin, Y. Unravelling the synergy in platinum-nickel bimetal catalysts designed by atomic layer deposition for efficient hydrolytic dehydrogenation of ammonia borane. Appl. Catal. B Environ. 2022, 306, 121116.
Long, L. L.; Su, L. L.; Hu, W.; Deng, S. H.; Chen, C.; Shen, F.; Xu, M.; Huang, G. X.; Yang, G. Micro-mechanism of multi-pathway activation peroxymonosulfate by copper-doped cobalt silicate: The dual role of copper. Appl. Catal. B Environ. 2022, 309, 121276.
Han, S.; Shin, K.; Henkelman, G.; Mullins, C. B. Selective oxidation of acetaldehyde to acetic acid on Pd-Au bimetallic model catalysts. ACS Catal. 2019, 9, 4360–4368.
Handoko, A. D.; Wei, F. X.; Jenndy; Yeo, B. S.; Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 2018, 1, 922–934.
Pfisterer, J. H. K.; Liang, Y. C.; Schneider, O.; Bandarenka, A. S. Direct instrumental identification of catalytically active surface sites. Nature 2017, 549, 74–77.
Li, J. L.; Wang, D. F.; Zhang, G. F.; Yang, C. G.; Guo, W. L.; Han, X.; Bai, X. Q.; Chen, R. Y.; Qin, C. B.; Hu, J. Y. et al. The role of surface charges in the blinking mechanisms and quantum-confined Stark effect of single colloidal quantum dots. Nano Res. 2022, 15, 7655–7661.
Dong, J. C.; Zhang, X. G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. L.; Wu, D. Y.; Feliu, J. M.; Williams, C. T. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 2019, 4, 60–67.
Zhang, C. Y.; Jia, F. C.; Li, Z. Y.; Huang, X.; Lu, G. Plasmon-generated hot holes for chemical reactions. Nano Res. 2020, 13, 3183–3197.
Chen, Y. Q.; Zhu, Y. M.; Sheng, H. X.; Wang, J.; Zhang, C. Y.; Chen, Y. Q.; Huang, W.; Lu, G. Molecular coadsorption of p-hydroxythiophenol on silver nanoparticles boosts the plasmon-mediated decarboxylation reaction. ACS Catal. 2022, 12, 2938–2946.
Yang, W. C. D.; Wang, C. H.; Fredin, L. A.; Lin, P. A.; Shimomoto, L.; Lezec, H. J.; Sharma, R. Site-selective CO disproportionation mediated by localized surface plasmon resonance excited by electron beam. Nat. Mater. 2019, 18, 614–619.
Vadai, M.; Angell, D. K.; Hayee, F.; Sytwu, K.; Dionne, J. A. In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles. Nat. Commun. 2018, 9, 4658.
Li, Y. J.; Adamsen, K. C.; Lammich, L.; Lauritsen, J. V.; Wendt, S. Atomic-scale view of the oxidation and reduction of supported ultrathin FeO islands. ACS Nano 2019, 13, 11632–11641.
Hartman, T.; Geitenbeek, R. G.; Wondergem, C. S.; van der Stam, W.; Weckhuysen, B. M. Operando nanoscale sensors in catalysis: All eyes on catalyst particles. ACS Nano 2020, 14, 3725–3735.
Zhai, X. T.; Zhang, R. X.; Sheng, H. X.; Wang, J.; Zhu, Y. M.; Lu, Z. C.; Li, Z. Y.; Huang, X.; Li, H.; Lu, G. Direct observation of the light-induced exfoliation of molybdenum disulfide sheets in water medium. ACS Nano 2021, 15, 5661–5670.
Lu, Z. C.; Zhai, X. T.; Yi, R. H.; Li, Z. Y.; Zhang, R. X.; Wei, Q.; Xing, G. C.; Lu, G.; Huang, W. Photoluminescence emission during photoreduction of graphene oxide sheets as investigated with single-molecule microscopy. J. Phys. Chem. C 2020, 124, 7914–7921.
Feng, J. D. Electrochemistry probed one molecule at a time. Curr. Opin. Electrochem. 2022, 34, 101000.
Easter, Q. T.; Blum, S. A. Organic and organometallic chemistry at the single-molecule, -particle, and -molecular-catalyst-turnover level by fluorescence microscopy. Acc. Chem. Res. 2019, 52, 2244–2255.
Hamans, R. F.; Kamarudheen, R.; Baldi, A. Single particle approaches to plasmon-driven catalysis. Nanomaterials 2020, 10, 2377.
Cao, J.; Zhang, D. Z.; Xu, W. L. Recent progress in single-molecule fluorescence technology in nanocatalysis. Nano Res. 2022, 15, 10316–10327.
Ye, R.; Zhao, M.; Mao, X. W.; Wang, Z. H.; Garzón, D. A.; Pu, H. T.; Zhao, Z. H.; Chen, P. Nanoscale cooperative adsorption for materials control. Nat. Commun. 2021, 12, 4287.
Kang, J. Y.; Park, S. J.; Kim, J. H.; Chen, P.; Sung, J. Stochastic kinetics of nanocatalytic systems. Phys. Rev. Lett. 2021, 126, 126001.
Zhao, M.; Chen, P. Exploring plasmonic photocatalysis via single-molecule reaction imaging. Nano Lett. 2020, 20, 2939–2940.
Shen, H.; Zhou, X. C.; Zou, N. M.; Chen, P. Single-molecule kinetics reveals a hidden surface reaction intermediate in single-nanoparticle catalysis. J. Phys. Chem. C 2014, 118, 26902–26911.
Zou, N. M.; Chen, G. Q.; Mao, X. W.; Shen, H.; Choudhary, E.; Zhou, X. C.; Chen, P. Imaging catalytic hotspots on single plasmonic nanostructures via correlated super-resolution and electron microscopy. ACS Nano 2018, 12, 5570–5579.
Zou, N. M.; Zhou, X. C.; Chen, G. Q.; Andoy, N. M.; Jung, W.; Liu, G. K.; Chen, P. Cooperative communication within and between single nanocatalysts. Nat. Chem. 2018, 10, 607–614.
Chen, G. Q.; Zou, N. M.; Chen, B.; Sambur, J. B.; Choudhary, E.; Chen, P. Bimetallic effect of single nanocatalysts visualized by super-resolution catalysis imaging. ACS Cent Sci 2017, 3, 1189–1197.
Zhang, K. L.; Du, Y. G.; Chen, S. M. Sub 30 nm silver nanowire synthesized using KBr as co-nucleant through one-pot polyol method for optoelectronic applications. Org. Electron. 2015, 26, 380–385.
Chen, T.; Chen, S.; Zhang, Y. W.; Qi, Y. F.; Zhao, Y. Z.; Xu, W. L.; Zeng, J. Catalytic kinetics of different types of surface atoms on shaped Pd nanocrystals. Angew. Chem., Int. Ed. 2016, 55, 1839–1843.
Su, L.; Lu, G.; Kenens, B.; Rocha, S.; Fron, E.; Yuan, H. F.; Chen, C.; Van Dorpe, P.; Roeffaers, M. B. J.; Mizuno, H. et al. Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy. Nat. Commun. 2015, 6, 6287.
Zhu, Y. M.; Guan, M. D.; Wang, J.; Sheng, H. X.; Chen, Y. Q.; Liang, Y.; Peng, Q. M.; Lu, G. Plasmon-mediated photochemical transformation of inorganic nanocrystals. Appl. Mater. Today 2021, 24, 101125.
Shaik, F.; Peer, I.; Jain, P. K.; Amirav, L. Plasmon-enhanced multicarrier photocatalysis. Nano Lett. 2018, 18, 4370–4376.
Laible, F.; Gollmer, D. A.; Dickreuter, S.; Kern, D. P.; Fleischer, M. Continuous reversible tuning of the gap size and plasmonic coupling of bow tie nanoantennas on flexible substrates. Nanoscale 2018, 10, 14915–14922.
Zhang, Q.; Liu, Y. Y.; Nie, Y. X.; Liu, Y.; Ma, Q. Wavelength-dependent surface plasmon coupling electrochemiluminescence biosensor based on sulfur-doped carbon nitride quantum dots for K-RAS gene detection. Anal. Chem. 2019, 91, 13780–13786.
Yu, Y.; Wijesekara, K. D.; Xi, X. X.; Willets, K. A. Quantifying wavelength-dependent plasmonic hot carrier energy distributions at metal/semiconductor interfaces. ACS Nano 2019, 13, 3629–3637.
Wang, R. Y.; Yu, Y. W.; Zhou, S. S.; Li, H. Q.; Wong, H.; Luo, Z. T.; Gan, L.; Zhai, T. Y. Strategies on phase control in transition metal dichalcogenides. Adv. Funct. Mater. 2018, 28, 1802473.
Fang, Y. R.; Li, Z. P.; Huang, Y. Z.; Zhang, S. P.; Nordlander, P.; Halas, N. J.; Xu, H. X. Branched silver nanowires as controllable plasmon routers. Nano Lett. 2010, 10, 1950–1954.
Reddy, H.; Wang, K.; Kudyshev, Z.; Zhu, L. X.; Yan, S.; Vezzoli, A.; Higgins, S. J.; Gavini, V.; Boltasseva, A.; Reddy, P. et al. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science 2020, 369, 423–426.
Zhao, X. Y.; Wen, J. H.; Zhu, A. N.; Cheng, M. Y.; Zhu, Q.; Zhang, X. L.; Wang, Y. X.; Zhang, Y. J. Manipulation and applications of hotspots in nanostructured surfaces and thin films. Nanomaterials 2020, 10, 1667.
Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076.
Sun, M. M.; Qian, H. M.; Liu, J.; Li, Y. C.; Pang, S. P.; Xu, M.; Zhang, J. T. A flexible conductive film prepared by the oriented stacking of Ag and Au/Ag alloy nanoplates and its chemically roughened surface for explosive SERS detection and cell adhesion. RSC Adv. 2017, 7, 7073–7078.
Li, Z. Y.; Huang, X.; Lu, G. Recent developments of flexible and transparent SERS substrates. J. Mater. Chem. C 2020, 8, 3956–3969.
Toyouchi, S.; Wolf, M.; Nakao, Y.; Fujita, Y.; Inose, T.; Fortuni, B.; Hirai, K.; Hofkens, J.; De Feyter, S.; Hutchison, J. et al. Controlled fabrication of optical signal input/output sites on plasmonic nanowires. Nano Lett. 2020, 20, 2460–2467.
Lu, G.; Yuan, H. F.; Su, L.; Kenens, B.; Fujita, Y.; Chamtouri, M.; Pszona, M.; Fron, E.; Waluk, J.; Hofkens, J. et al. Plasmon-mediated surface engineering of silver nanowires for surface-enhanced Raman scattering. J. Phys. Chem. Lett. 2017, 8, 2774–2779.
Reguera, J.; Langer, J.; Jiménez de Aberasturi, D.; Liz-Marzán, L. M. Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem. Soc. Rev. 2017, 46, 3866–3885.