AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A vivid Au-porous anodic alumina composite film with the inverted taper structure for label-free detection

Zhumin Yu1,§Kai Zhao1,§Lin Li1Changqing Ye1( )Yuxiang Dong1Yanlin Song2( )
School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

§ Zhumin Yu and Kai Zhao contributed equally to this work.

Show Author Information

Graphical Abstract

A vivid inverted taper structured Au-porous anodic alumina is prepared for thrombin detection.

Abstract

Localized surface plasmon resonance (LSPR) has been widely used in medical detection because of its time effectiveness, non-invasiveness, high sensitivity, and relatively simple fabrication process. Porous anodic alumina (PAA) can be regarded as a plasma substrate for label-free detection due to its unique two-dimensional structure. In this work, a vivid Au-PAA composite film with the inverted taper structure was developed by multi-step anodic oxidation and pore-widening processes followed by magnetron sputtering with Au nanoparticles (AuNPs). The highly saturated and bright structural color was generated by the synergistic effect of photonic and plasmonic modes. Interestingly, various Au-PAA composite films with structural colors altering from purple to red were obtained via adjusting the height/diameter ratio of PAA. Benefiting from the inverted taper structure, light trap characteristics were effectively enhanced by increasing the incident light and reducing the diffuse light. In addition, a finite difference time domain (FDTD) model was proposed to predict the relationship between the reflectance peak and the height of the composite film, and the simulated data were in good agreement with the experimental results. As a proof of concept, label-free detections of various reagents (water, ethanol, glycol, glycerol, and glucose), the concentration of glucose (refractive index sensitivity of 376 nm/RIU, RIU: refractive index unit), and thrombin (detection limit of 0.1 × 10−7 mol/L) were realized by the Au-PAA composite film. This vivid Au-PAA composite film provides a very powerful tool for in-situ label-free bio-detection.

Electronic Supplementary Material

Download File(s)
12274_2023_5549_MOESM1_ESM.pdf (1.3 MB)

References

[1]

Shan, B. B.; Pu, Y. H.; Chen, Y. F.; Liao, M. L.; Li, M. Novel SERS labels: Rational design, functional integration, and biomedical applications. Coord. Chem. Rev. 2018, 371, 11–37.

[2]

Jackman, J. A.; Ferhan, A. R.; Cho, N. J. Nanoplasmonic sensors for biointerfacial science. Chem. Soc. Rev. 2017, 46, 3615–3660.

[3]

Dhathathreyan, A. Real-time monitoring of invertase activity immobilized in nanoporous aluminum oxide. J. Phys. Chem. B 2011, 115, 6678–6682.

[4]

Hotta, K.; Yamaguchi, A.; Teramae, N. Nanoporous waveguide sensor with optimized nanoarchitectures for highly sensitive label-free biosensing. ACS Nano 2012, 6, 1541–1547.

[5]

Lednický, T.; Bonyár, A. Large scale fabrication of ordered gold nanoparticle-epoxy surface nanocomposites and their application as label-free plasmonic DNA biosensors. ACS Appl. Mater. Interfaces 2020, 12, 4804–4814.

[6]

Yeom, S. H.; Kim, O. G.; Kang, B. H.; Kim, K. J.; Yuan, H.; Kwon, D. H.; Kim, H. R.; Kang, S. W. Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference. Opt. Express 2011, 19, 22882–22891.

[7]

Kim, D. K.; Kerman, K.; Saito, M.; Sathuluri, R. R.; Endo, T.; Yamamura, S.; Kwon, Y. S.; Tamiya, E. Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry. Anal. Chem. 2007, 79, 1855–1864.

[8]

Homola, J.; Yee, S. S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuators B Chem. 1999, 54, 3–15.

[9]

Teng, Y.; Shi, J.; Pong, P. W. T. Sensitive and specific colorimetric detection of cancer cells based on folate-conjugated gold-iron-oxide composite nanoparticles. ACS Appl. Nano Mater. 2019, 2, 7421–7431.

[10]

Dickinson, T. A.; White, J.; Kauer, J. S.; Walt, D. R. A chemical-detecting system based on a cross-reactive optical sensor array. Nature 1996, 382, 697–700.

[11]

Zhao, Y. J.; Liu, X. H.; Li, J.; Qiang, W. B.; Sun, L.; Li, H.; Xu, D. K. Microfluidic chip-based silver nanoparticles aptasensor for colorimetric detection of thrombin. Talanta 2016, 150, 81–87.

[12]

Gu, J. J.; Yang, S. M.; Dong, M. Y.; Qi, Y. K. Study on magnetic and optical properties of porous anodic alumina/Co composite films with rainbow structural color prepared by an annular carbon electrode. J. Alloys Compd. 2017, 728, 93–99.

[13]

Jia, X. X.; Sun, H. Y.; Liu, L. H.; Hou, X.; Liu, H. Y. Synthesis and properties of iridescent Zn-containing anodic aluminum oxide films. Thin Solid Films 2015, 586, 8–12.

[14]

Li, Y.; Yue, W. J.; Chen, Z. X.; Cao, B. Q.; Fu, X. Q.; Zhang, C. W.; Li, Z. M. Large-area structural color filtering capitalizing on nanoporous metal-dielectric-metal configuration. Nanoscale Res. Lett. 2018, 13, 217.

[15]

Wei, H. Y.; Xu, Q.; Chen, D. C.; Chen, M.; Chang, M. L.; Ye, X. F. Lowered infrared emittance and enhanced thermal stability of solar selective absorption properties of anodic aluminum oxide photonic crystal coatings. Solar Energy 2022, 241, 592–600.

[16]

Xu, Q.; Ye, W. J.; Feng, S. Z.; Sun, H. Y. Synthesis and properties of iridescent Co-containing anodic aluminum oxide films. Dyes Pigm. 2014, 111, 185–189.

[17]

Wang, C. H.; Qin, P. W.; Lv, D. H.; Wan, J. C.; Sun, S. Q.; Ma, H. Characterization of anisotropy of the porous anodic alumina by the Mueller matrix imaging method. Opt. Express 2020, 28, 6740–6754.

[18]

Cao, F.; Zhao, X. P.; Lv, X. Q.; Hu, L. C.; Jiang, W. H.; Yang, F.; Chi, L.; Chang, P. Y.; Xu, C.; Xie, Y. Y. An LSPR sensor integrated with VCSEL and microfluidic chip. Nanomaterials 2022, 12, 2607.

[19]

Lee, J. S.; Kim, S. W.; Jang, E. Y.; Kang, B. H.; Lee, S. W.; Sai-Anand, G.; Lee, S. H.; Kwon, D. H.; Kang, S. W. Rapid and sensitive detection of lung cancer biomarker using nanoporous biosensor based on localized surface plasmon resonance coupled with interferometry. J. Nanomater. 2015, 2015, 183438.

[20]

Shi, G. C.; Wang, M. L.; Zhu, Y. Y.; Yan, X. Y.; Pan, S. Y.; Zhang, A. Q. Nanoflower-like Ag/AAO SERS platform with quasi-photonic crystal nanostructure for efficient detection of goat serum. Curr. Appl. Phys. 2019, 19, 1276–1285.

[21]

Yang, C. Y.; Qin, Y.; Zhu, X. F.; Yin, M.; Li, D. D.; Chen, X. Y.; Song, Y. Inverted nanotaper-based Ag film for optical absorption and SERS applications. J. Alloys Compd. 2015, 632, 634–638.

[22]

Ye, Q.; Cao, R. Y.; Wang, X.; Zhai, X. Q.; Wang, T. T.; Xu, Y.; He, Y.; Jia, M.; Su, X.; Bai, L. H. et al. Localized surface plasmon and transferred electron enhanced UV emission of ZnO by periodical aluminum nanoparticle arrays. J. Lumin. 2022, 244, 118740.

[23]

Wang, H. M.; Huang, L. Q.; Zhang, Y.; Cai, Y. K.; Cheng, L.; Zhai, L. P.; Liu, Y.; Zhang, X. Z.; Zhu, J. P. Vivid reflective color generation mechanism in Al/AAO/Al configuration. Opt. Mater. Express 2022, 12, 2270–2282.

[24]

Bae, K.; Lee, J.; Kang, G. M.; Yoo, D. S.; Lee, C. W.; Kim, K. Refractometric and colorimetric index sensing by a plasmon-coupled hybrid AAO nanotemplate. RSC Adv. 2015, 5, 103052–103059.

[25]

Kim, S.; Kim, J. Y.; Heo, S. J.; Yang, J. H.; Son, G.; Jang, H. W.; Choi, J. P.; Hwang, J. Y.; Moon, C.; Jang, J. E. Enhanced color sensitivity by coupling of surface plasmon and Fabry–Perot resonances for spectrometer-free and label-free biosensing. Sens. Actuators B Chem. 2020, 319, 128301.

[26]

Liu, X.; Wei, M.; Liu, Y. J.; Lv, B. J.; Wei, W.; Zhang, Y. J.; Liu, S. Q. Label-free detection of telomerase activity in urine using telomerase-responsive porous anodic alumina nanochannels. Anal. Chem. 2016, 88, 8107–8114.

[27]

Brudzisz, A. M.; Giziński, D.; Stępniowski, W. J. Incorporation of ions into nanostructured anodic oxides—Mechanism and functionalities. Molecules 2021, 26, 6378.

[28]

Choudhari, K. S.; Choi, C. H.; Chidangil, S.; George, S. D. Recent progress in the fabrication and optical properties of nanoporous anodic alumina. Nanomaterials 2022, 12, 444.

[29]

Yamamoto, Y.; Baba, N.; Tajima, S. Coloured materials and photoluminescence centres in anodic film on aluminium. Nature 1981, 289, 572–574.

[30]

Gartia, M. R.; Hsiao, A.; Pokhriyal, A.; Seo, S.; Kulsharova, G.; Cunningham, B. T.; Bond, T. C.; Liu, G. L. Colorimetric plasmon resonance imaging using nano Lycurgus cup arrays. Adv. Opt. Mater. 2013, 1, 68–76.

[31]

Isoda, T.; Takahara, N.; Imanaga, H.; Imamura, R.; Hasegawa, S.; Noguchi, K.; Kimura, T. Measurement of non-electrolyte concentrations in an ion solution using a micro-electrode sensor. Sens. Actuators B Chem. 2006, 120, 1–9.

[32]

Vollmer, F.; Arnold, S. Whispering-gallery-mode biosensing: Label-free detection down to single molecules. Nat. Methods 2008, 5, 591–596.

[33]

Atwater, H. A.; Polman, A. Erratum: Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 865–865.

[34]

Li, J.; Li, C. S.; Chen, C.; Hao, Q. L.; Wang, Z. J.; Zhu, J.; Gao, X. F. Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores. ACS Appl. Mater. Interfaces 2012, 4, 5678–5683.

[35]

Masuda, H.; Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 1995, 268, 1466–1468.

[36]

Junesch, J.; Sannomiya, T.; Dahlin, A. B. Optical properties of nanohole arrays in metal-dielectric double films prepared by mask-on-metal colloidal lithography. ACS Nano 2012, 6, 10405–10415.

[37]

Ghaemi, H. F.; Thio, T.; Grupp, D. E.; Ebbesen, T. W.; Lezec, H. J. Surface plasmons enhance optical transmission through subwavelength holes. Phys. Rev. B 1998, 58, 6779–6782.

[38]

Kumar, S.; Singh, R. Recent optical sensing technologies for the detection of various biomolecules: Review. Opt. Laser Technol. 2021, 134, 106620.

[39]

Zhao, X. L.; Meng, G. W.; Xu, Q. L.; Han, F. M.; Huang, Q. Color fine-tuning of CNTs@AAO composite thin films via isotropically etching porous AAO before CNT growth and color modification by water infusion. Adv. Mater. 2010, 22, 2637–2641.

[40]

Mínguez-Bacho, I.; Rodríguez-López, S.; Climent-Font, A.; Fichou, D.; Vázquez, M.; Hernández-Vélez, M. Variation of the refractive index by means of sulfate anion incorporation into nanoporous anodic aluminum oxide films. Micropor. Mesopor. Mst. 2016, 225, 192–197.

[41]

Shen, W. Z.; Li, M. Z.; Wang, B. L.; Liu, J.; Li, Z. Y.; Jiang, L.; Song, Y. L. Hierarchical optical antenna: Gold nanoparticle-modified photonic crystal for highly-sensitive label-free DNA detection. J. Mater. Chem. 2012, 22, 8127–8133.

[42]

Su, H.; Cheng, X. R.; Endo, T.; Kerman, K. Photonic crystals on copolymer film for label-free detection of DNA hybridization. Biosens. Bioelectron. 2018, 103, 158–162.

[43]

Zhao, X. P.; Wang, S. S.; Younis, M. R.; Xia, X. H.; Wang, C. Asymmetric nanochannel-ionchannel hybrid for ultrasensitive and label-free detection of copper ions in blood. Anal. Chem. 2018, 90, 896–902.

[44]

Kindt, J. T.; Bailey, R. C. Biomolecular analysis with microring resonators: Applications in multiplexed diagnostics and interaction screening. Curr. Opin. Chem. Biol. 2013, 17, 818–826.

[45]

Soteropulos, C. E.; Zurick, K. M.; Bernards, M. T.; Hunt, H. K. Tailoring the protein adsorption properties of whispering gallery mode optical biosensors. Langmuir 2012, 28, 15743–15750.

Nano Research
Pages 9997-10003
Cite this article:
Yu Z, Zhao K, Li L, et al. A vivid Au-porous anodic alumina composite film with the inverted taper structure for label-free detection. Nano Research, 2023, 16(7): 9997-10003. https://doi.org/10.1007/s12274-023-5549-6
Topics:

826

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 28 November 2022
Revised: 26 January 2023
Accepted: 05 February 2023
Published: 08 March 2023
© Tsinghua University Press 2023
Return