Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Finely tuning mechanosensitive membrane proteins holds great potential in precisely controlling inflammatory responses. In addition to macroscopic force, mechanosensitive membrane proteins are reported to be sensitive to micro-nano forces. Integrin β2, for example, might undergo a piconewton scale stretching force in the activation state. High-aspect-ratio nanotopographic structures were found to generate nN-scale biomechanical force. Together with the advantages of uniform and precisely tunable structural parameters, it is fascinating to develop low-aspect-ratio nanotopographic structures to generate micro-nano forces for finely modulating their conformations and the subsequent mechanoimmiune responses. In this study, low-aspect-ratio nanotopographic structures were developed to finely manipulate the conformation of integrin β2. The direct interaction of forces and the model molecule integrin αXβ2 was first performed. It was demonstrated that pressing force could successfully induce conformational compression and deactivation of integrin αXβ2, and approximately 270 to 720 pN may be required to inhibit its conformational extension and activation. Three low-aspect-ratio nanotopographic surfaces (nanohemispheres, nanorods, and nanoholes) with various structural parameters were specially designed to generate the micro-nano forces. It was found that the nanorods and nanohemispheres surfaces induce greater contact pressure at the contact interface between macrophages and nanotopographic structures, particularly after cell adhesion. These higher contact pressures successfully inhibited the conformational extension and activation of integrin β2, suppressing focal adhesion activity and the downstream PI3K-Akt signaling pathway, reducing NF-κB signaling and macrophage inflammatory responses. Our findings suggest that nanotopographic structures can be used to finely tune mechanosensitive membrane protein conformation changes, providing an effective strategy for precisely modulating inflammatory responses.
Jin, R. R.; Liu, L.; Zhu, W. C.; Li, D. Y.; Yang, L.; Duan, J. M.; Cai, Z. Y.; Nie, Y.; Zhang, Y. J.; Gong, Q. Y. et al. Iron oxide nanoparticles promote macrophage autophagy and inflammatory response through activation of toll-like Receptor-4 signaling. Biomaterials 2019, 203, 23–30.
Solis, A. G.; Bielecki, P.; Steach, H. R.; Sharma, L.; Harman, C. C. D.; Yun, S.; de Zoete, M. R.; Warnock, J. N.; To, S. D. F.; York, A. G. et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature 2019, 573, 69–74.
Schröder, A.; Käppler, P.; Nazet, U.; Jantsch, J.; Proff, P.; Cieplik, F.; Deschner, J.; Kirschneck, C. Effects of compressive and tensile strain on macrophages during simulated orthodontic tooth movement. Mediators Inflamm. 2020, 2020, 2814015.
Baratchi, S.; Zaldivia, M. T. K.; Wallert, M.; Loseff-Silver, J.; Al-Aryahi, S.; Zamani, J.; Thurgood, P.; Salim, A.; Htun, N. M.; Stub, D. et al. Transcatheter aortic valve implantation represents an anti-inflammatory therapy via reduction of shear stress-induced, Piezo-1-mediated monocyte activation. Circulation 2020, 142, 1092–1105.
Del Pozo, M. A.; Lolo, F. N.; Echarri, A. Caveolae: Mechanosensing and mechanotransduction devices linking membrane trafficking to mechanoadaptation. Curr. Opin. Cell Biol. 2021, 68, 113–123.
Liang, X.; Howard, J. Structural biology: Piezo senses tension through curvature. Curr. Biol. 2018, 28, R357–R359.
Sun, Z. Q.; Costell, M.; Fässler, R. Integrin activation by talin, kindlin and mechanical forces. Nat. Cell Biol. 2019, 21, 25–31.
Basu, R.; Whitlock, B. M.; Husson, J.; Le Floc’h, A.; Jin, W. Y.; Oyler-Yaniv, A.; Dotiwala, F.; Giannone, G.; Hivroz, C.; Biais, N. et al. Cytotoxic T cells use mechanical force to potentiate target cell killing. Cell 2016, 165, 100–110.
Dustin, M. L. T-cell activation through immunological synapses and kinapses. Immunol. Rev. 2008, 221, 77–89.
Kaizuka, Y. Regulations of T cell activation by membrane and cytoskeleton. Membranes 2020, 10, 443.
Bujalowski, P. J.; Oberhauser, A. F. Tracking unfolding and refolding reactions of single proteins using atomic force microscopy methods. Methods 2013, 60, 151–160.
Collie, A. M. B.; Bota, P. C. S.; Johns, R. E.; Maier, R. V.; Stayton, P. S. Differential monocyte/macrophage interleukin-1β production due to biomaterial topography requires the β2 integrin signaling pathway. J. Biomed. Mater. Res. 2011, 96A, 162–169.
Lowin, T.; Straub, R. H. Integrins and their ligands in rheumatoid arthritis. Arthritis Res. Ther. 2011, 13, 244.
Hajishengallis, G.; Chavakis, T.; Lambris, J. D. Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy. Periodontology 2020, 84, 14–34.
Galior, K.; Liu, Y.; Yehl, K.; Vivek, S.; Salaita, K. Titin-based nanoparticle tension sensors map high-magnitude integrin forces within focal adhesions. Nano Lett. 2016, 16, 341–348.
Hanson, L.; Zhao, W. T.; Lou, H. Y.; Lin, Z. C.; Lee, S. W.; Chowdary, P.; Cui, Y.; Cui, B. X. Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells. Nat. Nanotechnol. 2015, 10, 554–562.
Le Saux, G.; Bar-Hanin, N.; Edri, A.; Hadad, U.; Porgador, A.; Schvartzman, M. Nanoscale mechanosensing of natural killer cells is revealed by antigen-functionalized nanowires. Adv. Mater. 2019, 31, 1805954.
Seong, H.; Higgins, S. G.; Penders, J.; Armstrong, J. P. K.; Crowder, S. W.; Moore, A. C.; Sero, J. E.; Becce, M.; Stevens, M. M. Size-tunable nanoneedle arrays for influencing stem cell morphology, gene expression, and nuclear membrane curvature. ACS Nano 2020, 14, 5371–5381.
Choi, J.; Cho, W.; Jung, Y. S.; Kang, H. S.; Kim, H. T. Direct fabrication of micro/nano-patterned surfaces by vertical-directional photofluidization of azobenzene materials. ACS Nano 2017, 11, 1320–1327.
Chen, Z. T.; Bachhuka, A.; Wei, F.; Wang, X. S.; Liu, G. Q.; Vasilev, K.; Xiao, Y. Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration. Nanoscale 2017, 9, 18129–18152.
Chiappini, C.; Chen, Y. P.; Aslanoglou, S.; Mariano, A.; Mollo, V.; Mu, H. W.; De Rosa, E.; He, G.; Tasciotti, E.; Xie, X. et al. Tutorial: Using nanoneedles for intracellular delivery. Nat. Protoc. 2021, 16, 4539–4563.
Goldberg-Oppenheimer, P.; Hutter, T.; Chen, B. G.; Robertson, J.; Hofmann, S.; Mahajan, S. Optimized vertical carbon nanotube forests for multiplex surface-enhanced Raman scattering detection. J. Phys. Chem. Lett. 2012, 3, 3486–3492.
Xie, X.; Xu, A. M.; Angle, M. R.; Tayebi, N.; Verma, P.; Melosh, N. A. Mechanical model of vertical nanowire cell penetration. Nano Lett. 2013, 13, 6002–6008.
Kong, K. Y.; Chang, Y. Y.; Hu, Y.; Qiao, H.; Zhao, C.; Rong, K. W.; Zhang, P.; Zhang, J. W.; Zhai, Z. J.; Li, H. W. TiO2 nanotubes promote osteogenic differentiation through regulation of yap and Piezo1. Front. Bioeng. Biotechnol. 2022, 10, 872088.
Guo, Y. L.; Mi, J. M.; Ye, C.; Ao, Y.; Shi, M. R.; Shan, Z. J.; Li, B. Z.; Chen, Z. T.; Chen, Z. F.; Vasilev, K. et al. A practical guide to promote informatics-driven efficient biotopographic material development. Bioact. Mater. 2022, 8, 515–528.
Cha, T. G.; Yi, J. W.; Moon, M. W.; Lee, K. R.; Kim, H. Y. Nanoscale patterning of microtextured surfaces to control superhydrophobic robustness. Langmuir 2010, 26, 8319–8326.
Dalby, M. J.; Gadegaard, N.; Oreffo, R. O. C. Harnessing nanotopography and integrin–matrix interactions to influence stem cell fate. Nat. Mater. 2014, 13, 558–569.
Schaks, M.; Giannone, G.; Rottner, K. Actin dynamics in cell migration. Essays Biochem. 2019, 63, 483–495.
Chen, S. X.; Wang, H. J.; Mainardi, V. L.; Talò, G.; McCarthy, A.; John, J. V.; Teusink, M. J.; Hong, L.; Xie, J. W. Biomaterials with structural hierarchy and controlled 3D nanotopography guide endogenous bone regeneration. Sci. Adv. 2021, 7, eabg3089.
Wu, S. Y.; Shan, Z. J.; Xie, L.; Su, M. X.; Zeng, P. S.; Huang, P. N.; Zeng, L. C.; Sheng, X. Y.; Li, Z. P.; Zeng, G. C. et al. Mesopore controls the responses of blood clot-immune complex via modulating fibrin network. Adv. Sci. 2022, 9, 2103608.
Pan, T.; Gao, Y. Y.; Xu, G.; Zhou, P.; Li, S.; Guo, J.; Zou, H. Z.; Xu, Q.; Huang, X. Y.; Xu, J. et al. Pan-cancer analyses reveal the genetic and pharmacogenomic landscape of transient receptor potential channels. NPJ Genom. Med. 2022, 7, 32.
Mezu-Ndubuisi, O. J.; Maheshwari, A. The role of integrins in inflammation and angiogenesis. Pediatr. Res. 2021, 89, 1619–1626.
Zhou, H.; Liao, J. Y.; Aloor, J.; Nie, H.; Wilson, B. C.; Fessler, M. B.; Gao, H. M.; Hong, J. S. CD11b/CD18 (Mac-1) is a novel surface receptor for extracellular double-stranded RNA to mediate cellular inflammatory responses. J. Immunol. 2013, 190, 115–125.
Xiong, J. L.; Yan, L. L.; Zou, C.; Wang, K.; Chen, M. J.; Xu, B.; Zhou, Z. P.; Zhang, D. X. Integrins regulate stemness in solid tumor: An emerging therapeutic target. J. Hematol. Oncol. 2021, 14, 177.
Byeon, S. E.; Yi, Y. S.; Oh, J.; Yoo, B. C.; Hong, S.; Cho, J. Y. The role of Src kinase in macrophage-mediated inflammatory responses. Mediators Inflamm. 2012, 2012, 512926.
Rahmani, F.; Asgharzadeh, F.; Avan, A.; Barneh, F.; Parizadeh, M. R.; Ferns, G. A.; Ryzhikov, M.; Ahmadian, M. R.; Giovannetti, E.; Jafari, M. et al. Rigosertib potently protects against colitis-associated intestinal fibrosis and inflammation by regulating PI3K/AKT and NF-κB signaling pathways. Life Sci. 2020, 249, 117470.
Yuan, Y. L.; Lin, B. Q.; Zhang, C. F.; Cui, L. L.; Ruan, S. X.; Yang, Z. L.; Li, F.; Ji, D. Timosaponin B-II ameliorates palmitate-induced insulin resistance and inflammation via IRS-1/PI3K/Akt and IKK/NF-κB pathways. Am. J. Chin. Med. 2016, 44, 755–769.
Zhao, D.; Zhang, L. J.; Huang, T. Q.; Kim, J.; Gu, M. Y.; Yang, H. O. Narciclasine inhibits LPS-induced neuroinflammation by modulating the Akt/IKK/NF-κB and JNK signaling pathways. Phytomedicine 2021, 85, 153540.
Napetschnig, J.; Wu, H. Molecular basis of NF-κB signaling. Annu. Rev. Biophys. 2013, 42, 443–468.
Zhao, Y.; Zhang, C. M.; Huang, Y.; Yu, Y.; Li, R.; Li, M.; Liu, N. N.; Liu, P.; Qiao, J. Up-regulated expression of WNT5a increases inflammation and oxidative stress via PI3K/AKT/NF-κB signaling in the granulosa cells of PCOS patients. J. Clin. Endocrinol. Metab. 2015, 100, 201–211.
Schittenhelm, L.; Hilkens, C. M.; Morrison, V. L. β2 integrins as regulators of dendritic cell, monocyte, and macrophage function. Front. Immunol. 2017, 8, 1866.
Harrison, D. L.; Fang, Y.; Huang, J. T-cell mechanobiology: Force sensation, potentiation, and translation. Front. Phys. 2019, 7, 45.
Zhu, H. X.; Zhang, M. H.; Wang, P.; Sun, C.; Xu, W. M.; Ma, J. J.; Zhu, Y. Z.; Wang, D. Y. Exploring the regulating mechanism of heat induced gelation of myosin by binding with Mb hemin prosthetic group. Food Chem. 2022, 382, 132354.
Wang, Y. J.; Liu, M. Y.; Gao, J. L. Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions. Proc. Natl. Acad. Sci. USA 2020, 117, 13967–13974.
Tang, H.; Zhao, Y.; Yang, X. N.; Liu, D. M.; Shan, S. J.; Cui, F. Y.; Xing, B. S. Understanding the pH-dependent adsorption of ionizable compounds on graphene oxide using molecular dynamics simulations. Environ. Sci.: Nano 2017, 4, 1935–1943.