Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Developing an efficient, interface-rich, and free-standing non-noble-metal electrocatalyst is vital for the flexible zinc-air batteries (ZABs). Herein, a three-dimensional (3D) heterogeneous carbon-based flexible membrane was assembled by Co@carbon nanosheets/carbon nanotubes and hollow carbon nanofiber (Co@NS/CNT-CNF) as an efficient oxygen reduction reaction (ORR) catalyst with a positive half-wave potential of 0.846 V and a small Tafel slope of 79 mV·dec−1. Meanwhile, the Co@NS/CNT-CNF electrode also exhibits excellent open-circuit voltage, peak power density, and long-time cycling stability in liquid-state ZABs (1.605 V, 163 mW·cm−2, and 400 h) and flexible ZABs under flat/bending condition (1.47 V, 102 mW·cm−2, and 80 h). Such heterogeneous flexible membrane architecture not only optimizes the electrolyte infiltration, but also provides capacious possibility for O2 and electrolyte transfer. Meanwhile, work-function analyses coupled with density functional theory (DFT) results demonstrate that the electron transfer capability and metal–support interaction can be well optimized in the obtained Co@NS/CNT-CNF catalyst.
Jayathilaka, W. A. D. M.; Qi, K.; Qin, Y. L.; Chinnappan, A.; Serrano-García, W.; Baskar, C.; Wang, H. B.; He, J. X.; Cui, S. Z.; Thomas, S. W. et al. Significance of nanomaterials in wearables: A review on wearable actuators and sensors. Adv. Mater. 2019, 31, 1805921.
Khan, Y.; Ostfeld, A. E.; Lochner, C. M.; Pierre, A.; Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 2016, 28, 4373–4395.
Liu, Y. Q.; He, K.; Chen, G.; Leow, W. R.; Chen, X. D. Nature-inspired structural materials for flexible electronic devices. Chem. Rev. 2017, 117, 12893–12941.
Li, H.; Kelly, S.; Guevarra, D.; Wang, Z. B.; Wang, Y.; Haber, J. A.; Anand, M.; Gunasooriya, G. T. K. K.; Abraham, C. S.; Vijay, S. et al. Analysis of the limitations in the oxygen reduction activity of transition metal oxide surfaces. Nat. Catal. 2021, 4, 463–468.
Xu, Y. F.; Zhang, Y.; Guo, Z. Y.; Ren, J.; Wang, Y. G.; Peng, H. S. Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets. Angew. Chem., Int. Ed. 2015, 54, 15390–15394.
Liu, Y. R.; Liu, X. J.; Lv, Z. H.; Liu, R.; Li, L. H.; Wang, J. M.; Yang, W. X.; Jiang, X.; Feng, X.; Wang, B. Tuning the spin state of the iron center by bridge-bonded Fe-O-Ti ligands for enhanced oxygen reduction. Angew. Chem., Int. Ed. 2022, 61, e202117617.
Liu, M. L.; Zhao, Z. P.; Duan, X. F.; Huang, Y. Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv. Mater. 2019, 31, 1802234.
Sievers, G. W.; Jensen, A. W.; Quinson, J.; Zana, A.; Bizzotto, F.; Oezaslan, M.; Dworzak, A.; Kirkensgaard, J. J. K.; Smitshuysen, T. E. L.; Kadkhodazadeh, S. et al. Self-supported Pt-CoO networks combining high specific activity with high surface area for oxygen reduction. Nat. Mater. 2021, 20, 208–213.
Luo, M. C.; Koper, M. T. M. A kinetic descriptor for the electrolyte effect on the oxygen reduction kinetics on Pt (111). Nat. Catal. 2022, 5, 615–623.
Yang, W. X.; Liu, X. J.; Lv, H.; Jia, J. B. Atomic Fe & FeP nanoparticles synergistically facilitate oxygen reduction reaction of hollow carbon hybrids. J. Colloid Interface Sci. 2021, 583, 371–375.
Liu, X. J.; Liu, Y. R.; Yang, W. X.; Feng, X.; Wang, B. Controlled modification of axial coordination for transition-metal single-atom electrocatalyst. Chem.—Eur. J. 2022, 28, e202201471.
Yang, W. X.; Zhou, J. H.; Wang, S.; Zhang, W. Y.; Wang, Z. C.; Lv, F.; Wang, K.; Sun, Q.; Guo, S. J. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 2019, 12, 1605–1612.
Chen, Z. Y.; Niu, H.; Ding, J.; Liu, H.; Chen, P. H.; Lu, Y. H.; Lu, Y. R.; Zuo, W. B.; Han, L.; Guo, Y. Z. et al. Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: Effect of iron spin-state tuning. Angew. Chem., Int. Ed. 2021, 60, 25404–25410.
Chen, Z. Y.; Su, X. Z.; Ding, J.; Yang, N.; Zuo, W. B.; He, Q. Y.; Wei, Z. M.; Zhang, Q.; Huang, J.; Zhai, Y. M. Boosting oxygen reduction reaction with Fe and Se dual-atom sites supported by nitrogen-doped porous carbon. Appl. Catal. B: Environ. 2022, 308, 121206.
Huang, X. X.; Shen, T.; Zhang, T.; Qiu, H. L.; Gu, X. X.; Ali, Z.; Hou, Y. L. Efficient oxygen reduction catalysts of porous carbon nanostructures decorated with transition metal species. Adv. Energy Mater. 2020, 10, 1900375.
Yang, W. X.; Zhou, J. H.; Wang, S.; Wang, Z. C.; Lv, F.; Zhang, W. S.; Zhang, W. Y.; Sun, Q.; Guo, S. J. A three-dimensional carbon framework constructed by N/S co-doped graphene nanosheets with expanded interlayer spacing facilitates potassium ion storage. ACS Energy Lett. 2020, 5, 1653–1661.
Deng, Y. J.; Luo, J. M.; Chi, B.; Tang, H. B.; Li, J.; Qiao, X. C.; Shen, Y. J.; Yang, Y. J.; Jia, C. M.; Rao, P. et al. Advanced atomically dispersed metal-nitrogen-carbon catalysts toward cathodic oxygen reduction in PEM fuel cells. Adv. Energy Mater. 2021, 11, 2101222.
Luo, E. G.; Chu, Y. Y.; Liu, J.; Shi, Z. P.; Zhu, S. Y.; Gong, L. Y.; Ge, J. J.; Choi, C. H.; Liu, C. P.; Xing, W. Pyrolyzed M-Nx catalysts for oxygen reduction reaction: Progress and prospects. Energy Environ. Sci. 2021, 14, 2158–2185.
Yang, L.; Zeng, X. F.; Wang, W. C.; Cao, D. P. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv. Funct. Mater. 2018, 28, 1704537.
Qiang, F. Q.; Feng, J. G.; Wang, H. L.; Yu, J. H.; Shi, J.; Huang, M. H.; Shi, Z. C.; Liu, S.; Li, P.; Dong, L. F. Oxygen engineering enables N-doped porous carbon nanofibers as oxygen reduction/evolution reaction electrocatalysts for flexible zinc-air batteries. ACS Catal. 2022, 12, 4002–4015.
Zhang, Z. Y.; Zhao, X. X.; Xi, S. B.; Zhang, L. L.; Chen, Z. X.; Zeng, Z. P.; Huang, M.; Yang, H. B.; Liu, B.; Pennycook, S. J. et al. Atomically dispersed cobalt trifunctional electrocatalysts with tailored coordination environment for flexible rechargeable Zn-air battery and self-driven water splitting. Adv. Energy Mater. 2020, 10, 2002896.
Chen, R. Z.; Zhang, Z. Y.; Wang, Z. C.; Wu, W.; Du, S. W.; Zhu, W. B.; Lv, H. F.; Cheng, N. C. Constructing air-stable and reconstruction-inhibited transition metal sulfide catalysts via tailoring electron-deficient distribution for water oxidation. ACS Catal. 2022, 12, 13234–13246.
Zhang, L.; Zhu, J. W.; Li, X.; Mu, S. C.; Verpoort, F.; Xue, J. M.; Kou, Z. K.; Wang, J. Nurturing the marriages of single atoms with atomic clusters and nanoparticles for better heterogeneous electrocatalysis. Interdiscip. Mater. 2022, 1, 51–87.
Zhang, Z. Y.; Tan, Y. Y.; Zeng, T.; Yu, L. Y.; Chen, R. Z.; Cheng, N. C.; Mu, S. C.; Sun, X. L. Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries. Nano Res. 2020, 14, 2353–2362.
Zhou, T. P.; Xu, W. F.; Zhang, N.; Du, Z. Y.; Zhong, C. G.; Yan, W. S.; Ju, H. X.; Chu, W. S.; Jiang, H.; Wu, C. Z. et al. Ultrathin cobalt oxide layers as electrocatalysts for high-performance flexible Zn-air batteries. Adv. Mater. 2019, 31, 1807468.
Liu, T.; Mou, J. R.; Wu, Z. P.; Lv, C.; Huang, J. L.; Liu, M. L. A facile and scalable strategy for fabrication of superior bifunctional freestanding air electrodes for flexible zinc-air batteries. Adv. Funct. Mater. 2020, 30, 2003407.
Liu, P. T.; Gao, D. Q.; Xiao, W.; Ma, L.; Sun, K.; Xi, P. X.; Xue, D. S.; Wang, J. Self-powered water-splitting devices by core–shell NiFe@N-graphite-based Zn-air batteries. Adv. Funct. Mater. 2018, 28, 1706928.
Liu, Y. S.; Chen, Z. C.; Li, Z. X.; Zhao, N.; Xie, Y. L.; Du, Y.; Xuan, J. N.; Xiong, D. B.; Zhou, J. Q.; Cai, L. et al. CoNi nanoalloy-Co-N4 composite active sites embedded in hierarchical porous carbon as bi-functional catalysts for flexible Zn-air battery. Nano Energy 2022, 99, 107325.
Wang, Z.; Ang, J.; Liu, J.; Ma, X. Y. D.; Kong, J. H.; Zhang, Y. F.; Yan, T.; Lu, X. H. FeNi alloys encapsulated in N-doped CNTs-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. Appl. Catal. B: Environ. 2020, 263, 118344.
Li, S.; Cheng, C.; Zhao, X. J.; Schmidt, J.; Thomas, A. Active salt/silica-templated 2D mesoporous FeCo-Nx-carbon as bifunctional oxygen electrodes for zinc-air batteries. Angew. Chem., Int. Ed. 2018, 57, 1856–1862.
Li, J. C.; Meng, Y.; Zhang, L. L.; Li, G. Z.; Shi, Z. C.; Hou, P. X.; Liu, C.; Cheng, H. M.; Shao, M. H. Dual-phasic carbon with Co single atoms and nanoparticles as a bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Adv. Funct. Mater. 2021, 31, 2103360.
Sharma, P. P.; Wu, J. J.; Yadav, R. M.; Liu, M. J.; Wright, C. J.; Tiwary, C. S.; Yakobson, B. I.; Lou, J.; Ajayan, P. M.; Zhou, X. D. Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: On the understanding of defects, defect density, and selectivity. Angew. Chem., Int. Ed. 2015, 54, 13701–13705.
Chen, Z. L.; Wu, R. B.; Liu, Y.; Ha, Y.; Guo, Y. H.; Sun, D. L.; Liu, M.; Fang, F. Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction. Adv. Mater. 2018, 30, 1802011.
Gao, J.; Wang, Y.; Wu, H. H.; Liu, X.; Wang, L. L.; Yu, Q. L.; Li, A. W.; Wang, H.; Song, C. Q.; Gao, Z. R. et al. Construction of a sp3/sp2 carbon interface in 3D N-doped nanocarbons for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 15089–15097.
Wu, C. H.; Chen, X. P.; Fu, J. W.; Zou, J. Z.; Liang, J. Z.; Wei, X. J.; Wang, L. L. ZIF-derived Co/NCNTs as a superior catalyst for aromatic hydrocarbon resin hydrogenation: Scalable green synthesis and insight into reaction mechanism. Chem. Eng. J. 2022, 443, 136193.
Zhang, S. L.; Lu, X. F.; Wu, Z. P.; Luan, D. Y.; Lou, X. W. Engineering platinum-cobalt nano-alloys in porous nitrogen-doped carbon nanotubes for highly efficient electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19068–19073.
Jia, Y.; Zhang, L. Z.; Zhuang, L. Z.; Liu, H. L.; Yan, X. C.; Wang, X.; Liu, J. D.; Wang, J. C.; Zheng, Y. R.; Xiao, Z. H. et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2019, 2, 688–695.
Jia, N.; Weng, Q.; Shi, Y. R.; Shi, X. Y.; Chen, X. B.; Chen, P.; An, Z. W.; Chen, Y. N-doped carbon nanocages: Bifunctional electrocatalysts for the oxygen reduction and evolution reactions. Nano Res. 2018, 11, 1905–1916.
Yokoyama, K.; Sato, Y.; Yamamoto, M.; Nishida, T.; Motomiya, K.; Tohji, K.; Sato, Y. Work function, carrier type, and conductivity of nitrogen-doped single-walled carbon nanotube catalysts prepared by annealing via defluorination and efficient oxygen reduction reaction. Carbon 2019, 142, 518–527.
Li, L. H.; Liu, X. J.; Wang, J. M.; Liu, R.; Liu, Y. R.; Wang, C. L.; Yang, W. X.; Feng, X.; Wang, B. Atomically dispersed Co in a cross-channel hierarchical carbon-based electrocatalyst for high-performance oxygen reduction in Zn-air batteries. J. Mater. Chem. A 2022, 10, 18723–18729.
Yuan, S.; Zhang, J. W.; Hu, L. Y.; Li, J. N.; Li, S. W.; Gao, Y. N.; Zhang, Q. H.; Gu, L.; Yang, W. X.; Feng, X. et al. Decarboxylation-induced defects in MOF-derived single cobalt atom@carbon electrocatalysts for efficient oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 21685–21690.
Sharma, M.; Jang, J. H.; Shin, D. Y.; Kwon, J. A.; Lim, D. H.; Choi, D.; Sung, H.; Jang, J.; Lee, S. Y.; Lee, K. Y. et al. Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction. Energy Environ. Sci. 2019, 12, 2200–2211.
Wang, T. T.; Liu, M.; Chaemchuen, S.; Wang, J. C.; Yuan, Y.; Chen, C.; Qiao, A.; Verpoort, F.; Kou, Z. K. Constructing a stable cobalt-nitrogen-carbon air cathode from coordinatively unsaturated zeolitic-imidazole frameworks for rechargeable zinc-air batteries. Nano Res. 2022, 15, 5895–5901.
Wang, T. T.; Wang, P. Y.; Zang, W. J.; Li, X.; Chen, D.; Kou, Z. K.; Mu, S. C.; Wang, J. Nanoframes of Co3O4-Mo2N heterointerfaces enable high-performance bifunctionality toward both electrocatalytic HER and OER. Adv. Funct. Mater. 2021, 32, 2107382.
Tan, Y. Y.; Zhu, W. B.; Zhang, Z. Y.; Wu, W.; Chen, R. Z.; Mu, S. C.; Lv, H. F.; Cheng, N. C. Electronic tuning of confined sub-nanometer cobalt oxide clusters boosting oxygen catalysis and rechargeable Zn-air batteries. Nano Energy 2021, 83, 105813.