AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Boosting sodium-storage properties of hierarchical Na3V2(PO4)3@C micro-flower cathodes by tiny Cr doping: The effect of “four ounces moving a thousand pounds”

Yongjia WangGuoshuai SuXiaoying LiLinrui HouLongwei Liang( )Changzhou Yuan( )
School of Materials Science & Engineering, University of Jinan, Jinan 250022, China
Show Author Information

Graphical Abstract

Hierarchical single-crystal Na3V2−xCrx(PO4)3@C micro-flower cathodes are smartly fabricated with considerable enhancement in sodium-storage properties just by tiny Cr doping (x < 0.1) towards wide-operation-tolerant Na-ion batteries.

Abstract

Na3V2(PO4)3 (NVP), as a great potential cathode candidate for Na-ion batteries (NIBs), has attracted enormous interest due to its three-dimensional (3D) large open framework for convenient Na+ transport, yet its practical application is still limited by its inferior electron conductivity and sluggish Na+ diffusion kinetics. Herein, the tiny Cr doped hierarchical NVP micro-flower cathodes (i.e., Na3V2−xCrx(PO4)3@C, x ≤ 0.1), which are self-assembled with single-crystal nanoflake subunits in-situ coated with carbon nano-shell, are designed and fabricated via a scalable avenue. The optimized cathode, i.e., Na3V1.94Cr0.06(PO4)3@C (NVCP-6), was endowed with more electro-active Na(2) sites and higher electronic/ionic conductivity for efficient sodium storage. Benefiting from these competitive merits, the NVCP-6, when evaluated as a cathode towards NIBs, exhibits an ultrahigh-rate capability of 99.8 mAh·g−1 at 200 C and superior stability of 82.2% over 7300 cycles at 50 C. Furthermore, the NVCP-6 based full NIBs display remarkable electrochemical properties in terms of both high-rate capacities and long-duration cycling properties at different temperatures (−20–50 °C). The contribution, i.e., the design of “four ounces can move a thousand pounds”, here will promote the practical industrial application of NVP towards advanced NIBs.

Electronic Supplementary Material

Download File(s)
12274_2023_5555_MOESM1_ESM.pdf (1.9 MB)

References

[1]

Chen, M. Z.; Liu, Q. N.; Wang, S. W.; Wang, E. H.; Guo, X. D.; Chou, S. L. High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: Problems, progress, and key technologies. Adv. Energy Mater. 2019, 9, 1803609.

[2]

Pan, D.; Chen, W. X.; Sun, S. W.; Lu, X.; Wu, X. L.; Yu, C. Y.; Hu, Y. S.; Bai. Y. A high-rate capability and energy density sodium ion full cell enabled by F-doped Na2Ti3O7 hollow spheres. J. Mater. Chem. A 2022, 10, 23232–23243.

[3]

Shan, Y. L.; He, Y. Y.; Yang, N.; Zhu, X.; Liu, H. L.; Jiang, H.; Li. C. Z. Regulating steric hindrance in redox-active porous organic frameworks achieves enhanced sodium storage performance. Small 2022, 18, 2105927.

[4]
Zhu, H. W.; Wang, Z. H.; Chen, L.; Hu, Y. J.; Jiang, H.; Li, C. Z. Strain engineering of Ni-rich cathode enables exceptional cyclability in pouch-type full cells. Adv. Mater., in press, https://doi.org/10.1002/ADMA.202209357.
[5]

Usiskin, R.; Lu, Y. X.; Popovic, J.; Law, M.; Balaya, P.; Hu, Y. S.; Maier, J. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 2021, 6, 1020–1035.

[6]

Tian, Y. S.; Zeng, G. B.; Rutt, A.; Shi, T.; Kim, H.; Wang, J. Y.; Koettgen, J.; Sun, Y. Z.; Ouyang, B.; Chen, T. N. et al. Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 2021, 121, 1623–1669.

[7]

Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten. P. H. L. From Li-ion batteries toward Na-ion chemistries: Challenges and opportunities. Adv. Energy Mater. 2020, 10, 2001310.

[8]

Jamesh, M. I.; Prakash. A. S. Advancement of technology towards developing Na-ion batteries. J. Power Sources 2018, 378, 268–300.

[9]

Yu, C. Y.; Yang, L. Y.; Sun, S. W.; Chen, D.; Yin, Y. F.; Yang, H. Y.; Bai. Y. Enhanced Na-storage properties of O3-type NaNi0.5Mn0.5O2 cathodes by doping and coating dual-modification strategy. Ceram. Int. 2022, 48, 36715–36722.

[10]

Wu, J. X.; Lin, C.; Liang, Q. H.; Zhou, G. D.; Liu, J. P.; Liang, G. M.; Wang, M.; Li, B. H.; Hu, L.; Ciucci, F. et al. Sodium-rich NASICON-structured cathodes for boosting the energy density and lifespan of sodium-free-anode sodium metal batteries. InfoMat 2022, 4, e12288.

[11]

Rajagopalan, R.; Zhang, Z. N.; Tang, Y. G.; Jia, C. K.; Ji, X. B.; Wang. H. Y. Understanding crystal structures, ion diffusion mechanisms and sodium storage behaviors of NASICON materials. Energy Storage Mater. 2021, 34, 171–193.

[12]

Song, W. L.; Ji, X. B.; Wu, Z. P.; Zhu, Y. R.; Yang, Y. C.; Chen, J.; Jing, M. J.; Li, F. Q.; Banks. C. E. First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. J. Mater. Chem. A 2014, 2, 5358–5362.

[13]

An, Q. Y.; Xiong, F. Y.; Wei, Q. L.; Sheng, J. Z.; He, L.; Ma, D. L.; Yao, Y.; Mai. L. Q. Nanoflake-assembled hierarchical Na3V2(PO4)3/C microflowers: Superior Li storage performance and insertion/extraction mechanism. Adv. Energy Mater. 2015, 5, 1401963.

[14]

Jing, M. X.; Zhang, J.; Han, C.; Yang, H.; Yao, S. S.; Zhu, L.; Chen, L. L.; Xie, Q. L.; Chen, X.; Shen, X. Q. et al. A flexible Na3V2(PO4)3/C composite fiber membrane cathode for Na-ion and Na-Li hybrid-ion batteries. J. Electrochem. Soc. 2018, 165, A1761–A1769.

[15]

Zhang, J. X.; Fang, Y. J.; Xiao, L. F.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang. H. X. Graphene-scaffolded Na3V2(PO4)3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 7177–7184.

[16]

Zhou, Y. P.; Zhang, X. H.; Liu, Y. J.; Xie, X. X.; Rui, X. H.; Zhang, X.; Feng, Y. Z.; Zhang, X. J.; Yu, Y.; Huang. K. M. A high-temperature Na-ion battery: Boosting the rate capability and cycle life by structure engineering. Small 2020, 16, 1906669.

[17]

Chen, R. Y.; Butenko, D. S.; Li, S. L.; Li, D. D.; Zhang, X. Y.; Cao, J. M.; Ogorodnyk, I. V.; Klyui, N. I.; Han, W.; Zatovsky. I. V. Effects of low doping on the improvement of cathode materials Na3+xV2−xMx(PO4)3 (M = Co2+, Cu2+; x = 0.01–0.05) for SIBs. J. Mater. Chem. A 2021, 9, 17380–17389.

[18]

Lee, J.; Park, S.; Park, Y.; Song, J. J.; Sambandam, B.; Mathew, V.; Hwang, J. Y.; Kim. J. Chromium doping into NASICON-structured Na3V2(PO4)3 cathode for high-power Na-ion batteries. Chem. Eng. J. 2021, 422, 130052.

[19]

Wang, E. H.; Xiang, W.; Rajagopalan, R.; Wu, Z. G.; Yang, J.; Chen, M. Z.; Zhong, B. H.; Dou, S. X.; Chou, S. L.; Guo, X. D. et al. Construction of 3D pomegranate-like Na3V2(PO4)3/conducting carbon composites for high-power sodium-ion batteries. J. Mater. Chem. A 2017, 5, 9833–9841.

[20]

Gao, F. J.; Chen, D.; Yang, H. Y.; Yin, Y. F.; Yu, C. Y.; Bai. Y. Sandwich structure endows Na3V2(PO4)3 cathodes with superb sodium storage. Appl. Phys. Lett. 2022, 121, 113901.

[21]

Liang, L. W.; Li, X. Y.; Zhao, F.; Zhang, J. Y.; Liu, Y.; Hou, L. R.; Yuan. C. Z. Construction and operating mechanism of high-rate Mo-doped Na3V2(PO4)3@C nanowires toward practicable wide-temperature-tolerance Na-ion and hybrid Li/Na-ion batteries. Adv. Energy Mater. 2021, 11, 2100287.

[22]

Lalère, F.; Seznec, V.; Courty, M.; David, R.; Chotard, J. N.; Masquelier. C. Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution. J. Mater. Chem. A 2015, 3, 16198–16205.

[23]

Wang, Q. C.; Zhao, Y. J.; Gao, J. J.; Geng, H. Y.; Li, J. B.; Jin. H. B. Triggering the reversible reaction of V3+/V4+/V5+ in Na3V2(PO4)3 by Cr3+ substitution. ACS Appl. Mater. Interfaces 2020, 12, 50315–50323.

[24]

Zhou, W. D.; Xue, L. G.; Lü, X. J.; Gao, H. C.; Li, Y. T.; Xin, S.; Fu, G. T.; Cui, Z. M.; Zhu, Y.; Goodenough. J. B. NaxMV(PO4)3 (M = Mn, Fe, Ni) structure and properties for sodium extraction. Nano Lett. 2016, 16, 7836–7841.

[25]

De Boisse, B. M.; Ming, J.; Nishimura, S. I.; Yamada. A. Alkaline excess strategy to NASICON-type compounds towards higher-capacity battery electrodes. J. Electrochem. Soc. 2016, 163, A1469–A1473.

[26]

Soundharrajan, V.; Nithiananth, S.; Sakthiabirami, K.; Kim, J. H.; Su, C. Y.; Chang. J. K. The advent of manganese-substituted sodium vanadium phosphate-based cathodes for sodium-ion batteries and their current progress: A focused review. J. Mater. Chem. A 2022, 10, 1022–1046.

[27]

Li, J. W.; Cao, X. X.; Pan, A. Q.; Zhao, Y. L.; Yang, H. L.; Cao, G. Z.; Liang. S. Q. Nanoflake-assembled three-dimensional Na3V2(PO4)3/C cathode for high performance sodium ion batteries. Chem. Eng. J. 2018, 335, 301–308.

[28]

Peng, M. H.; Zhang, D. T.; Zheng, L. M.; Wang, X. Y.; Lin, Y.; Xia, D. G.; Sun, Y. G.; Guo. G. S. Hierarchical Ru-doped sodium vanadium fluorophosphates hollow microspheres as a cathode of enhanced superior rate capability and ultralong stability for sodium-ion batteries. Nano Energy 2017, 31, 64–73.

[29]

Zatovsky. I. V. NASICON-type Na3V2(PO4)3 [Online]. Acta Crystallogr. Sect. E Struct. Rep. 2010, 66, i12.

[30]

Bi, L. N.; Li, X. Y.; Liu, X. Q.; Zheng, Q. J.; Lin. D. M. Enhanced cycling stability and rate capability in a La-doped Na3V2(PO4)3/C cathode for high-performance sodium ion batteries. ACS Sustainable Chem. Eng. 2019, 7, 7693–7699.

[31]

Xu, C. L.; Xiao, R. J.; Zhao, J. M.; Ding, F. X.; Yang, Y.; Rong, X. H.; Guo, X. D.; Yang, C.; Liu, H. Z.; Zhong, B. H. et al. Mn-rich phosphate cathodes for Na-ion batteries with superior rate performance. ACS Energy Lett. 2022, 7, 97–107.

[32]

Ren, W. H.; Zheng, Z. P.; Xu, C.; Niu, C. J.; Wei, Q. L.; An, Q. Y.; Zhao, K. N.; Yan, M. Y.; Qin, M. S.; Mai. L. Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium-ion full batteries. Nano Energy 2016, 25, 145–153.

[33]

Ni, Q.; Bai, Y.; Li, Y.; Ling, L. M.; Li, L. M.; Chen, G. H.; Wang, Z. H.; Ren, H. X.; Wu, F.; Wu. C. 3D electronic channels wrapped large-sized Na3V2(PO4)3 as flexible electrode for sodium-ion batteries. Small 2018, 14, 1702864.

[34]

Huang, Y. Y.; Li, X.; Wang, J. S.; Miao, L.; Li, C.; Han, J. T.; Huang. Y. H. Superior Na-ion storage achieved by Ti substitution in Na3V2(PO4)3. Energy Storage Mater. 2018, 15, 108–115.

[35]

Shao, W.; Zhou, Y. F.; Rao, L. X.; Xing, X. L.; Shi, Z. J.; Yang. Q. X. Effect of Cr doping on interface properties of DLC/CrN composite coatings: First-principles study. Diamond Related Mater. 2022, 121, 108721.

[36]

Wu, C. Z.; Xie, Y.; Lei, L. Y.; Hu, S. Q.; Ouyang. C. Z. Synthesis of new-phased VOOH hollow “dandelions” and their application in lithium-ion batteries. Adv. Mater. 2006, 18, 1727–1732.

[37]

Li, G. S.; Feng, S. H.; Li, L. P.; Li, X. R.; Jin. W. J. Mild hydrothermal syntheses and thermal behaviors of hydrogarnets Sr3M2(OH)12 (M = Cr, Fe, and Al). Chem. Mater. 1997, 9, 2894–2901.

[38]

Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl. U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742.

[39]

Zhang, J. Y.; Chen, Z. Y.; Wang, G. Y.; Hou, L. R.; Yuan. C. Z. Eco-friendly and scalable synthesis of micro-/mesoporous carbon sub-microspheres as competitive electrodes for supercapacitors and sodium-ion batteries. Appl. Surf. Sci. 2020, 533, 147511.

[40]

Ayiania, M.; Weiss-Hortala, E.; Smith, M.; McEwen, J. S.; Garcia-Perez. M. Microstructural analysis of nitrogen-doped char by Raman spectroscopy: Raman shift analysis from first principles. Carbon 2020, 167, 559–574.

[41]

Nistor, L. C.; Van Landuyt, J.; Ralchenko, V. G.; Kononenko, T. V.; Obraztsova, E. D.; Strelnitsky. V. E. Direct observation of laser-induced crystallization of a-C: H films. Appl. Phys. A 1994, 58, 137–144.

[42]

Liang, L. W.; Sun, X.; Zhang, J. Y.; Hou, L. R.; Sun, J. F.; Liu, Y.; Wang, S. G.; Yuan. C. Z. In situ synthesis of hierarchical core double-shell Ti-doped LiMnPO4@NaTi2(PO4)3@C/3D graphene cathode with high-rate capability and long cycle life for lithium-ion batteries. Adv. Energy Mater. 2019, 9, 1802847.

[43]

Fang, Y. J.; Xiao, L. F.; Ai, X. P.; Cao, Y. L.; Yang. H. X. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv. Mater. 2015, 27, 5895–5900.

[44]

Xu, Y. N.; Wei, Q. L.; Xu, C.; Li, Q. D.; An, Q. Y.; Zhang, P. F.; Sheng, J. Z.; Zhou, L.; Mai. L. Q. Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv. Energy Mater. 2016, 6, 1600389.

[45]

Cao, X. X.; Pan, A. Q.; Yin, B.; Fang, G. Z.; Wang, Y. P.; Kong, X. Z.; Zhu, T.; Zhou, J.; Cao, G. Z.; Liang. S. Q. Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications. Nano Energy 2019, 60, 312–323.

[46]

Van Hagen, R.; Lepcha, A.; Song, X. F.; Tyrra, W.; Mathur. S. Influence of electrode design on the electrochemical performance of Li3V2(PO4)3/C nanocomposite cathode in lithium ion batteries. Nano Energy 2013, 2, 304–313.

[47]

Li, S. J.; Ge, P.; Zhang, C. Y.; Sun, W.; Hou, H. S.; Ji. X. B. The electrochemical exploration of double carbon-wrapped Na3V2(PO4)3: Towards long-time cycling and superior rate sodium-ion battery cathode. J. Power Sources 2017, 366, 249–258.

[48]

Xiong, H. L.; Sun, G.; Liu, Z. L.; Zhang, L.; Li, L.; Zhang, W.; Du, F.; Qiao. Z. A. Polymer stabilized droplet templating towards tunable hierarchical porosity in single crystalline Na3V2(PO4)3 for enhanced sodium-ion storage. Angew. Chem., Int. Ed. 2021, 60, 10334–10341.

[49]

Xu, C. L.; Zhao, J. M.; Wang, Y. A.; Hua, W. B.; Fu, Q.; Liang, X. M.; Rong, X. H.; Zhang, Q. Q.; Guo, X. D.; Yang, C. et al. Reversible activation of V4+/V5+ redox couples in NASICON phosphate cathodes. Adv. Energy Mater. 2022, 12, 2200966.

[50]

Su, Y. F.; Zhang, Q. Y.; Chen, L.; Bao, L. Y.; Lu, Y.; Shi, Q.; Wang, J.; Chen, S.; Wu. F. Riveting dislocation motion: The inspiring role of oxygen vacancies in the structural stability of Ni-rich cathode materials. ACS Appl. Mater. Interfaces 2020, 12, 37208–37217.

[51]

Hu, G. R.; Zhang, Z. Y.; Li, T. F.; Gan, Z. G.; Du, K.; Peng, Z. D.; Xia, J.; Tao, Y.; Cao. Y. B. In situ surface modification for improving the electrochemical performance of Ni-rich cathode materials by using ZrP2O7. ChemSusChem 2020, 13, 1603–1612.

[52]

Liang, L. W.; Zhang, W. H.; Denis, D. K.; Zhang, J. Y.; Hou, L. R.; Liu, Y.; Yuan. C. Z. Comparative investigations of high-rate NaCrO2 cathodes towards wide-temperature-tolerant pouch-type Na-ion batteries from −15 to 55 °C: Nanowires vs. bulk. J. Mater. Chem. A 2019, 7, 11915–11927.

[53]

Jia, M. Y.; Zhang, W. H.; Cai, X. P.; Zhan, X. J.; Hou, L. R.; Yuan, C. Z.; Guo. Z. P. Re-understanding the galvanostatic intermittent titration technique: Pitfalls in evaluation of diffusion coefficients and rational suggestions. J. Power Sources 2022, 543, 231843.

[54]

Qiu, T. Y.; Yang, L.; Xiang, Y. E.; Ye, Y.; Zou, G. Q.; Hou, H. S.; Ji. X. B. Heterogeneous interface design for enhanced sodium storage: Sb quantum dots confined by functional carbon. Small Methods 2021, 5, 2100188.

[55]

Wang, C. C.; Du, D. F.; Song, M. M.; Wang, Y. H.; Li. F. J. A high-power Na3V2(PO4)3-Bi sodium-ion full battery in a wide temperature range. Adv. Energy Mater. 2019, 9, 1900022.

[56]

Wang, Y. Y.; Hou, B. H.; Guo, J. Z.; Ning, Q. L.; Pang, W. L.; Wang, J. W.; Lü, C. L.; Wu. X. L. An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage. Adv. Energy Mater. 2018, 8, 1703252.

Nano Research
Pages 235-244
Cite this article:
Wang Y, Su G, Li X, et al. Boosting sodium-storage properties of hierarchical Na3V2(PO4)3@C micro-flower cathodes by tiny Cr doping: The effect of “four ounces moving a thousand pounds”. Nano Research, 2024, 17(1): 235-244. https://doi.org/10.1007/s12274-023-5555-8
Topics:

973

Views

14

Crossref

15

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 25 December 2022
Revised: 01 February 2023
Accepted: 07 February 2023
Published: 15 March 2023
© Tsinghua University Press 2023
Return