AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Iridium single-atom catalyst for highly efficient NO electroreduction to NH3

Kai Chen1,§Guohui Wang1,§Yali Guo1Dongwei Ma2Ke Chu1( )
School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China

§ Kai Chen and Guohui Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Atomically dispersed Ir confined in amorphous MoO3 (Ir1/a-MoO3) is reported as a high-performance catalyst for electrochemical NO to NH3 reduction reaction (NORR), which is ascribed to the single-site Ir1-O5 to effectively activate and hydrogenate NO while preferentially absorbing NO over H adatoms to suppress the competing hydrogen evolution.

Abstract

Atomically dispersed Ir confined in amorphous MoO3 (Ir1/a-MoO3) was designed as a high-efficiency catalyst for electrochemical reduction reaction of NO to NH3 (NORR). Atomic precise characterizations reveal that isolated Ir atoms are immobilized in O-vacancies of amorphous MoO3 to form Ir1-O5 moieties. Theoretical computations demonstrate that single-site Ir1-O5 can not only powerfully activate and hydrogenate NO with a near-zero energy barrier, but also exhibit a higher affinity to NO over H adatoms to suppress the competing hydrogen evolution and promote both NORR activity and selectivity. Consequently, Ir1/a-MoO3 shows the maximum NH3 yield rate of 438.8 μmol∙h−1∙cm−2 and NH3-Faradaic efficiency of 93.2%, representing one of the most efficient NORR catalysts to date.

Electronic Supplementary Material

Download File(s)
12274_2023_5556_MOESM1_ESM.pdf (2 MB)

References

[1]

Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, e9120010.

[2]

Zhao, X.; Hu, G. Z.; Chen, G. F.; Zhang, H. B.; Zhang, S. S.; Wang, H. H. Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction. Adv. Mater. 2021, 33, 2007650.

[3]

Shen, H. D.; Choi, C.; Masa, J.; Li, X.; Qiu, J. S.; Jung, Y.; Sun, Z. Y. Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design. Chem 2021, 7, 1708–1754.

[4]

Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.

[5]

Ren, Y. W.; Yu, C.; Tan, X. Y.; Huang, H. L.; Wei, Q. B.; Qiu, J. S. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: Challenges and perspectives. Energy Environ. Sci. 2021, 14, 1176–1193.

[6]

Ko, B. H.; Hasa, B.; Shin, H.; Zhao, Y. R.; Jiao, F. Electrochemical reduction of gaseous nitrogen oxides on transition metals at ambient conditions. J. Am. Chem. Soc. 2022, 144, 1258–1266.

[7]

Cheon, S.; Kim, W. J.; Kim, D. Y.; Kwon, Y.; Han, J. I. Electro-synthesis of ammonia from dilute nitric oxide on a gas diffusion electrode. ACS Energy Lett. 2022, 7, 958–965.

[8]

Xiao, Y.; Shen, C. Transition-metal borides (MBenes) as new high-efficiency catalysts for nitric oxide electroreduction to ammonia by a high-throughput approach. Small 2021, 17, 2100776.

[9]

Long, J.; Chen, S. M.; Zhang, Y. L.; Guo, C. X.; Fu, X. Y.; Deng, D. H.; Xiao, J. P. Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem., Int. Edit. 2020, 59, 9711–9718.

[10]

Choi, J.; Du, H. L.; Nguyen, C. K.; Suryanto, B. H. R.; Simonov, A. N.; MacFarlane, D. R. Electroreduction of nitrates, nitrites, and gaseous nitrogen oxides: A potential source of ammonia in dinitrogen reduction studies. ACS Energy Lett. 2020, 5, 2095–2097.

[11]

Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.

[12]

Liang, J.; Hu, W. F.; Song, B. Y.; Mou, T.; Zhang, L. C.; Luo, Y. S.; Liu, Q.; Alshehri, A. A.; Hamdy, M. S.; Yang, L. M. et al. Efficient nitric oxide electroreduction toward ambient ammonia synthesis catalyzed by a CoP nanoarray. Inorg. Chem. Front. 2022, 9, 1366–1372.

[13]

Qi, D. F.; Lv, F.; Wei, T. R.; Jin, M. M.; Meng, G.; Zhang, S. S.; Liu, Q.; Liu, W. X.; Ma, D.; Hamdy, M. S. et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy 2022, 1, e9120022.

[14]

Li, X. T.; Zhang, G. K.; Shen, P.; Zhao, X. L.; Chu, K. A defect engineered p-block SnS2−x catalyst for efficient electrocatalytic NO reduction to NH3. Inorg. Chem. Front. 2023, 10, 280–287.

[15]

Li, X. T.; Chen, K.; Lu, X. B.; Ma, D. W.; Chu, K. Atomically dispersed Co catalyst for electrocatalytic NO reduction to NH3. Chem. Eng. J. 2023, 454, 140333.

[16]
Chen, K.; Zhang, G. K.; Li, X. T.; Zhao, X. L.; Chu, K. Electrochemical NO reduction to NH3 on Cu single atom catalyst. Nano Res., in press, https://doi.org/10.1007/s12274-023-5384-9.
[17]

Chen, K.; Wang, J. X.; Kang, J. L.; Lu, X. B.; Zhao, X. L.; Chu, K. Atomically Fe-doped MoS2−x with Fe-Mo dual sites for efficient electrocatalytic NO reduction to NH3. Appl. Catal. B: Environ. 2023, 324, 122241.

[18]

Chen, K.; Shen, P.; Zhang, N. N.; Ma, D. W.; Chu, K. Electrocatalytic NO reduction to NH3 on Mo2C nanosheets. Inorg. Chem. 2023, 62, 653–658.

[19]

Chen, Y.; Lin, J.; Jia, B. H.; Wang, X. D.; Jiang, S. Y.; Ma, T. Y. Isolating single and few atoms for enhanced catalysis. Adv. Mater. 2022, 34, 2201796.

[20]

Kaiser, S. K.; Chen, Z. P.; Faust Akl, D.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

[21]

Gao, C.; Low, J.; Long, R.; Kong, T. T.; Zhu, J. F.; Xiong, Y. J. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 2020, 120, 12175–12216.

[22]

Wang, Y. X.; Xu, W. Q.; Chen, X. Y.; Li, C. Q.; Xie, J.; Yang, Y.; Zhu, T. Y.; Zhang, C. B. Single-atom Ir1 supported on rutile TiO2 for excellent selective catalytic oxidation of ammonia. J. Hazard. Mater. 2022, 432, 128670.

[23]

Song, W.; Fu, Z.; Liu, X.; Guo, Y. L.; He, C. Z.; Fu, L. Density functional theory study of a two-atom active site transition-metal/iridium electrocatalyst for ammonia synthesis. J. Mater. Chem. A 2022, 10, 13946–13957.

[24]

Jin, T.; Wang, J. T.; Gong, Y.; Zheng, Q.; Wang, T. X.; Wu, R. Q.; Lyu, Y.; Liu, X. F. Mechanochemical-tuning size dependence of iridium single atom and nanocluster toward highly selective ammonium production. Chem Catal. 2023, 3, 100477.

[25]

Xu, H.; Zhao, Y. T.; Wang, Q.; He, G. Y.; Chen, H. Q. Supports promote single-atom catalysts toward advanced electrocatalysis. Coordin. Chem. Rev. 2022, 451, 214261.

[26]

Zheng, X. B.; Li, P.; Dou, S. X.; Sun, W. P.; Pan, H. G.; Wang, D. S.; Li, Y. D. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci. 2021, 14, 2809–2858.

[27]

Li, X. N.; Yang, X. F.; Huang, Y. Q.; Zhang, T.; Liu, B. Supported noble-metal single atoms for heterogeneous catalysis. Adv. Mater. 2019, 31, 1902031.

[28]

Chen, W. L.; Ma, Y. L.; Li, F.; Pan, L.; Gao, W. P.; Xiang, Q.; Shang, W.; Song, C. Y.; Tao, P.; Zhu, H. et al. Strong electronic interaction of amorphous Fe2O3 nanosheets with single-atom Pt toward enhanced carbon monoxide oxidation. Adv. Funct. Mater. 2019, 29, 1904278.

[29]

Zhang, Q.; Qin, X. X.; Duan-Mu, F. P.; Ji, H. M.; Shen, Z. R.; Han, X. P.; Hu, W. B. Isolated platinum atoms stabilized by amorphous tungstenic acid: Metal–support interaction for synergistic oxygen activation. Angew. Chem., Int. Ed. 2018, 57, 9351–9356.

[30]

Liu, W.; Xu, Q.; Yan, P. F.; Chen, J.; Du, Y.; Chu, S. Q.; Wang, J. O. Fabrication of a single-atom platinum catalyst for the hydrogen evolution reaction: A new protocol by utilization of HxMoO3−x with plasmon resonance. ChemCatChem 2018, 10, 946–950.

[31]

Chen, K.; Zhang, Y.; Xiang, J. Q.; Zhao, X. L.; Li, X. G.; Chu, K. p-block antimony single-atom catalysts for nitric oxide electroreduction to ammonia. ACS Energy Lett. 2023, 8, 1281–1288.

[32]

Luo, Y. J.; Li, Q. Q.; Tian, Y.; Liu, Y. P.; Chu, K. Amorphization engineered VSe2−x nanosheets with abundant Se-vacancies for enhanced N2 electroreduction. J. Mater. Chem. A 2022, 10, 1742–1749.

[33]

Li, X. C.; Shen, P.; Luo, Y. J.; Li, Y. H.; Guo, Y. L.; Zhang, H.; Chu, K. PdFe single-atom alloy metallene for N2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202205923.

[34]
Chen, K.; Ma, Z. Y.; Li, X. C.; Kang, J. H.; Ma, D. W.; Chu, K. Single-atom Bi alloyed Pd metallene for nitrate electroreduction to ammonia. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202209890.
[35]

Shen, P.; Li, X. T.; Luo, Y. J.; Zhang, N. N.; Zhao, X. L.; Chu, K. Ultra-efficient N2 electroreduction achieved over a rhodium single-atom catalyst (Rh1/MnO2) in water-in-salt electrolyte. Appl. Catal. B: Environ. 2022, 316, 121651.

[36]

Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y. E.; Wu, Y.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 2020, 12, 764–772.

[37]

Xiao, M. L.; Zhu, J. B.; Li, G. R.; Li, N.; Li, S.; Cano, Z. P.; Ma, L.; Cui, P. X.; Xu, P.; Jiang, G. P. et al. A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 9640–9645.

[38]

Shao, X. Z.; Yang, X. F.; Xu, J. M.; Liu, S.; Miao, S.; Liu, X. Y.; Su, X.; Duan, H. M.; Huang, Y. Q.; Zhang, T. Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO2 to formate. Chem 2019, 5, 693–705.

[39]
Zhang, N. N.; Zhang, G. K.; Shen, P.; Zhang, H.; Ma, D. W.; Chu, K. Lewis acid Fe–V pairs promote nitrate electroreduction to ammonia. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202211537.
[40]

Zhao, X.; Li, X.; Zhang, H. B.; Chen, X.; Xu, J.; Yang, J.; Zhang, H. C.; Hu, G. Z. Atomic-dispersed copper simultaneously achieve high-efficiency removal and high-value-added conversion to ammonia of nitrate in sewage. J. Hazard. Mater. 2022, 424, 127319.

[41]

Li, S. M.; Lu, X. Y.; Zhao, S. Q.; Ceccato, M.; Hu, X. M.; Roldan, A.; Liu, M.; Daasbjerg, K. p-block indium single-atom catalyst with low-coordinated In-N motif for enhanced electrochemical CO2 reduction. ACS Catal. 2022, 12, 7386–7395.

[42]

Gu, Y.; Xi, B. J.; Tian, W. Z.; Zhang, H.; Fu, Q.; Xiong, S. L. Boosting selective nitrogen reduction via geometric coordination engineering on single-tungsten-atom catalysts. Adv. Mater. 2021, 33, 2100429.

[43]

Teng, Z. Y.; Zhang, Q. T.; Yang, H. B.; Kato, K.; Yang, W. J.; Lu, Y. R.; Liu, S. X.; Wang, C. Y.; Yamakata, A.; Su, C. L. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384.

[44]

Zhang, W. J.; Jiang, M. H.; Yang, S. Y.; Hu, Y.; Mu, B.; Tie, Z.; Jin, Z. In-situ grown CuOx nanowire forest on copper foam: A 3D hierarchical and freestanding electrocatalyst with enhanced carbonaceous product selectivity in CO2 reduction. Nano Res. Energy 2022, 1, e9120033.

[45]

Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1, e9120028.

[46]

Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, e9120027.

[47]

Cheng, Y.; Shen, P.; Li, X.; Li, X.; Chu, K.; Guo, Y. Synergistically enhanced peroxidase-like activity of Fe3O4/Ti3C2 MXene quantum dots and its application in colorimetric determination of Cr(VI). Sensor. Actuat. B: Chem. 2023, 376, 132979.

[48]
Zhang, G. K.; Li, X. T.; Chen, K.; Guo, Y. L.; Ma, D. W.; Chu, K. Tandem electrocatalytic nitrate reduction to ammonia on MBenes. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202300054.
[49]

Shen, P.; Wang, G. H.; Chen, K.; Kang, J. L.; Ma, D. W.; Chu, K. Selenium-vacancy-rich WSe2 for nitrate electroreduction to ammonia. J. Colloid Interface Sci. 2023, 629, 563–570.

[50]
Luo, Y. J.; Chen, K.; Wang, G. H.; Zhang, G. K.; Zhang, N. N.; Chu, K. Ce-doped MoS2−x nanoflower arrays for electrocatalytic nitrate reduction to ammonia. Inorg. Chem. Front., in press, https://doi.org/10.1039/D2QI01798A.
[51]

Xu, G. R.; Li, H.; Bati, A. S. R.; Bat-Erdene, M.; Nine, M. J.; Losic, D.; Chen, Y.; Shapter, J. G.; Batmunkh, M.; Ma, T. Y. Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis. J. Mater. Chem. A 2020, 8, 15875–15883.

[52]

Luo, Y. J.; Chen, K.; Shen, P.; Li, X. C.; Li, X. T.; Li, Y. H.; Chu, K. B-doped MoS2 for nitrate electroreduction to ammonia. J. Colloid Interface Sci. 2023, 629, 950–957.

[53]

Li, X. T.; Shen, P.; Li, X. C.; Ma, D. W.; Chu, K. Sub-nm RuOx clusters on Pd metallene for synergistically enhanced nitrate electroreduction to ammonia. ACS Nano 2023, 17, 1081–1090.

[54]

Wang, G. H.; Shen, P.; Luo, Y. J.; Li, X. T.; Li, X. C.; Chu, K. A vacancy engineered MnO2−x electrocatalyst promotes nitrate electroreduction to ammonia. Dalton Trans. 2022, 51, 9206–9212.

[55]

Chu, K.; Luo, Y. J.; Shen, P.; Li, X. C.; Li, Q. Q.; Guo, Y. L. Unveiling the synergy of O-vacancy and heterostructure over MoO3−x/MXene for N2 electroreduction to NH3. Adv. Energy. Mater. 2022, 12, 2103022.

[56]

Li, Q. Q.; Shen, P.; Tian, Y.; Li, X. C.; Chu, K. Metal-free BN quantum dots/graphitic C3N4 heterostructure for nitrogen reduction reaction. J. Colloid Interface Sci. 2022, 606, 204–212.

[57]

Chu, K.; Wang, J.; Liu, Y.; Li, Q.; Guo, Y. Mo-doped SnS2 with enriched S-vacancies for highly efficient electrocatalytic N2 reduction: The critical role of the Mo-Sn-Sn trimer. J. Mater. Chem. A 2020, 8, 7117–7124.

[58]

Chu, K.; Liu, Y. P.; Cheng, Y. H.; Li, Q. Q. Synergistic boron-dopants and boron-induced oxygen vacancies in MnO2 nanosheets to promote electrocatalytic nitrogen reduction. J. Mater. Chem. A 2020, 8, 5200–5208.

[59]

Li, Y. B.; Cheng, C. Q.; Han, S. H.; Huang, Y. M.; Du, X. W.; Zhang, B.; Yu, Y. F. Electrocatalytic reduction of low-concentration nitric oxide into ammonia over Ru nanosheets. ACS Energy Lett. 2022, 7, 1187–1194.

[60]

Shi, J. W.; Wang, C. H.; Yang, R.; Chen, F. P.; Meng, N. N.; Yu, Y. F.; Zhang, B. Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping. Sci. China Chem. 2021, 64, 1493–1497.

[61]
Wu, D. H.; Wu, J. R.; Lv, P.; Li, H. B.; Chu, K.; Ma, D. W. Atomically dispersed alkaline-earth metals as active centers for CO2 electroreduction to exclusively produce formate. Small Struct., in press, https://doi.org/10.1002/sstr.202200358.
[62]

Wu, D. H.; Lv, P.; Wu, J. R.; He, B. L.; Li, X.; Chu, K.; Jia, Y.; Ma, D. W. Catalytic active centers beyond transition metals: Atomically dispersed alkaline-earth metals for the electroreduction of nitrate to ammonia. J. Mater. Chem. A 2023, 11, 1817–1828.

[63]

He, B. L.; Lv, P.; Wu, D. H.; Li, X.; Zhu, R.; Chu, K.; Ma, D. W.; Jia, Y. Confinement catalysis of a single atomic vacancy assisted by aliovalent ion doping enabled efficient NO electroreduction to NH3. J. Mater. Chem. A 2022, 10, 18690–18700.

[64]

Cheng, Y. H.; Li, X. C.; Shen, P.; Guo, Y. L.; Chu, K. MXene quantum dots/copper nanocomposites for synergistically enhanced N2 electroreduction. Energy Environ. Mater. 2023, 6, e12268.

[65]

Shen, P.; Li, X. C.; Luo, Y. J.; Guo, Y. L.; Zhao, X. L.; Chu, K. High-efficiency N2 electroreduction enabled by Se-vacancy-rich WSe2−x in water-in-salt electrolytes. ACS Nano 2022, 16, 7915–7925.

[66]

Chu, K.; Li, X. C.; Li, Q. Q.; Guo, Y. L.; Zhang, H. Synergistic enhancement of electrocatalytic nitrogen reduction over boron nitride quantum dots decorated Nb2CTx-MXene. Small 2021, 17, 2102363.

Nano Research
Pages 8737-8742
Cite this article:
Chen K, Wang G, Guo Y, et al. Iridium single-atom catalyst for highly efficient NO electroreduction to NH3. Nano Research, 2023, 16(7): 8737-8742. https://doi.org/10.1007/s12274-023-5556-7
Topics:

906

Views

83

Crossref

77

Web of Science

85

Scopus

0

CSCD

Altmetrics

Received: 12 January 2023
Revised: 05 February 2023
Accepted: 06 February 2023
Published: 08 March 2023
© Tsinghua University Press 2023
Return