Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Atomically dispersed Ir confined in amorphous MoO3 (Ir1/a-MoO3) was designed as a high-efficiency catalyst for electrochemical reduction reaction of NO to NH3 (NORR). Atomic precise characterizations reveal that isolated Ir atoms are immobilized in O-vacancies of amorphous MoO3 to form Ir1-O5 moieties. Theoretical computations demonstrate that single-site Ir1-O5 can not only powerfully activate and hydrogenate NO with a near-zero energy barrier, but also exhibit a higher affinity to NO over H adatoms to suppress the competing hydrogen evolution and promote both NORR activity and selectivity. Consequently, Ir1/a-MoO3 shows the maximum NH3 yield rate of 438.8 μmol∙h−1∙cm−2 and NH3-Faradaic efficiency of 93.2%, representing one of the most efficient NORR catalysts to date.
Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, e9120010.
Zhao, X.; Hu, G. Z.; Chen, G. F.; Zhang, H. B.; Zhang, S. S.; Wang, H. H. Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction. Adv. Mater. 2021, 33, 2007650.
Shen, H. D.; Choi, C.; Masa, J.; Li, X.; Qiu, J. S.; Jung, Y.; Sun, Z. Y. Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design. Chem 2021, 7, 1708–1754.
Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.
Ren, Y. W.; Yu, C.; Tan, X. Y.; Huang, H. L.; Wei, Q. B.; Qiu, J. S. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: Challenges and perspectives. Energy Environ. Sci. 2021, 14, 1176–1193.
Ko, B. H.; Hasa, B.; Shin, H.; Zhao, Y. R.; Jiao, F. Electrochemical reduction of gaseous nitrogen oxides on transition metals at ambient conditions. J. Am. Chem. Soc. 2022, 144, 1258–1266.
Cheon, S.; Kim, W. J.; Kim, D. Y.; Kwon, Y.; Han, J. I. Electro-synthesis of ammonia from dilute nitric oxide on a gas diffusion electrode. ACS Energy Lett. 2022, 7, 958–965.
Xiao, Y.; Shen, C. Transition-metal borides (MBenes) as new high-efficiency catalysts for nitric oxide electroreduction to ammonia by a high-throughput approach. Small 2021, 17, 2100776.
Long, J.; Chen, S. M.; Zhang, Y. L.; Guo, C. X.; Fu, X. Y.; Deng, D. H.; Xiao, J. P. Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem., Int. Edit. 2020, 59, 9711–9718.
Choi, J.; Du, H. L.; Nguyen, C. K.; Suryanto, B. H. R.; Simonov, A. N.; MacFarlane, D. R. Electroreduction of nitrates, nitrites, and gaseous nitrogen oxides: A potential source of ammonia in dinitrogen reduction studies. ACS Energy Lett. 2020, 5, 2095–2097.
Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.
Liang, J.; Hu, W. F.; Song, B. Y.; Mou, T.; Zhang, L. C.; Luo, Y. S.; Liu, Q.; Alshehri, A. A.; Hamdy, M. S.; Yang, L. M. et al. Efficient nitric oxide electroreduction toward ambient ammonia synthesis catalyzed by a CoP nanoarray. Inorg. Chem. Front. 2022, 9, 1366–1372.
Qi, D. F.; Lv, F.; Wei, T. R.; Jin, M. M.; Meng, G.; Zhang, S. S.; Liu, Q.; Liu, W. X.; Ma, D.; Hamdy, M. S. et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy 2022, 1, e9120022.
Li, X. T.; Zhang, G. K.; Shen, P.; Zhao, X. L.; Chu, K. A defect engineered p-block SnS2−x catalyst for efficient electrocatalytic NO reduction to NH3. Inorg. Chem. Front. 2023, 10, 280–287.
Li, X. T.; Chen, K.; Lu, X. B.; Ma, D. W.; Chu, K. Atomically dispersed Co catalyst for electrocatalytic NO reduction to NH3. Chem. Eng. J. 2023, 454, 140333.
Chen, K.; Wang, J. X.; Kang, J. L.; Lu, X. B.; Zhao, X. L.; Chu, K. Atomically Fe-doped MoS2−x with Fe-Mo dual sites for efficient electrocatalytic NO reduction to NH3. Appl. Catal. B: Environ. 2023, 324, 122241.
Chen, K.; Shen, P.; Zhang, N. N.; Ma, D. W.; Chu, K. Electrocatalytic NO reduction to NH3 on Mo2C nanosheets. Inorg. Chem. 2023, 62, 653–658.
Chen, Y.; Lin, J.; Jia, B. H.; Wang, X. D.; Jiang, S. Y.; Ma, T. Y. Isolating single and few atoms for enhanced catalysis. Adv. Mater. 2022, 34, 2201796.
Kaiser, S. K.; Chen, Z. P.; Faust Akl, D.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.
Gao, C.; Low, J.; Long, R.; Kong, T. T.; Zhu, J. F.; Xiong, Y. J. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 2020, 120, 12175–12216.
Wang, Y. X.; Xu, W. Q.; Chen, X. Y.; Li, C. Q.; Xie, J.; Yang, Y.; Zhu, T. Y.; Zhang, C. B. Single-atom Ir1 supported on rutile TiO2 for excellent selective catalytic oxidation of ammonia. J. Hazard. Mater. 2022, 432, 128670.
Song, W.; Fu, Z.; Liu, X.; Guo, Y. L.; He, C. Z.; Fu, L. Density functional theory study of a two-atom active site transition-metal/iridium electrocatalyst for ammonia synthesis. J. Mater. Chem. A 2022, 10, 13946–13957.
Jin, T.; Wang, J. T.; Gong, Y.; Zheng, Q.; Wang, T. X.; Wu, R. Q.; Lyu, Y.; Liu, X. F. Mechanochemical-tuning size dependence of iridium single atom and nanocluster toward highly selective ammonium production. Chem Catal. 2023, 3, 100477.
Xu, H.; Zhao, Y. T.; Wang, Q.; He, G. Y.; Chen, H. Q. Supports promote single-atom catalysts toward advanced electrocatalysis. Coordin. Chem. Rev. 2022, 451, 214261.
Zheng, X. B.; Li, P.; Dou, S. X.; Sun, W. P.; Pan, H. G.; Wang, D. S.; Li, Y. D. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci. 2021, 14, 2809–2858.
Li, X. N.; Yang, X. F.; Huang, Y. Q.; Zhang, T.; Liu, B. Supported noble-metal single atoms for heterogeneous catalysis. Adv. Mater. 2019, 31, 1902031.
Chen, W. L.; Ma, Y. L.; Li, F.; Pan, L.; Gao, W. P.; Xiang, Q.; Shang, W.; Song, C. Y.; Tao, P.; Zhu, H. et al. Strong electronic interaction of amorphous Fe2O3 nanosheets with single-atom Pt toward enhanced carbon monoxide oxidation. Adv. Funct. Mater. 2019, 29, 1904278.
Zhang, Q.; Qin, X. X.; Duan-Mu, F. P.; Ji, H. M.; Shen, Z. R.; Han, X. P.; Hu, W. B. Isolated platinum atoms stabilized by amorphous tungstenic acid: Metal–support interaction for synergistic oxygen activation. Angew. Chem., Int. Ed. 2018, 57, 9351–9356.
Liu, W.; Xu, Q.; Yan, P. F.; Chen, J.; Du, Y.; Chu, S. Q.; Wang, J. O. Fabrication of a single-atom platinum catalyst for the hydrogen evolution reaction: A new protocol by utilization of HxMoO3−x with plasmon resonance. ChemCatChem 2018, 10, 946–950.
Chen, K.; Zhang, Y.; Xiang, J. Q.; Zhao, X. L.; Li, X. G.; Chu, K. p-block antimony single-atom catalysts for nitric oxide electroreduction to ammonia. ACS Energy Lett. 2023, 8, 1281–1288.
Luo, Y. J.; Li, Q. Q.; Tian, Y.; Liu, Y. P.; Chu, K. Amorphization engineered VSe2−x nanosheets with abundant Se-vacancies for enhanced N2 electroreduction. J. Mater. Chem. A 2022, 10, 1742–1749.
Li, X. C.; Shen, P.; Luo, Y. J.; Li, Y. H.; Guo, Y. L.; Zhang, H.; Chu, K. PdFe single-atom alloy metallene for N2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202205923.
Shen, P.; Li, X. T.; Luo, Y. J.; Zhang, N. N.; Zhao, X. L.; Chu, K. Ultra-efficient N2 electroreduction achieved over a rhodium single-atom catalyst (Rh1/MnO2) in water-in-salt electrolyte. Appl. Catal. B: Environ. 2022, 316, 121651.
Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y. E.; Wu, Y.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 2020, 12, 764–772.
Xiao, M. L.; Zhu, J. B.; Li, G. R.; Li, N.; Li, S.; Cano, Z. P.; Ma, L.; Cui, P. X.; Xu, P.; Jiang, G. P. et al. A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 9640–9645.
Shao, X. Z.; Yang, X. F.; Xu, J. M.; Liu, S.; Miao, S.; Liu, X. Y.; Su, X.; Duan, H. M.; Huang, Y. Q.; Zhang, T. Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO2 to formate. Chem 2019, 5, 693–705.
Zhao, X.; Li, X.; Zhang, H. B.; Chen, X.; Xu, J.; Yang, J.; Zhang, H. C.; Hu, G. Z. Atomic-dispersed copper simultaneously achieve high-efficiency removal and high-value-added conversion to ammonia of nitrate in sewage. J. Hazard. Mater. 2022, 424, 127319.
Li, S. M.; Lu, X. Y.; Zhao, S. Q.; Ceccato, M.; Hu, X. M.; Roldan, A.; Liu, M.; Daasbjerg, K. p-block indium single-atom catalyst with low-coordinated In-N motif for enhanced electrochemical CO2 reduction. ACS Catal. 2022, 12, 7386–7395.
Gu, Y.; Xi, B. J.; Tian, W. Z.; Zhang, H.; Fu, Q.; Xiong, S. L. Boosting selective nitrogen reduction via geometric coordination engineering on single-tungsten-atom catalysts. Adv. Mater. 2021, 33, 2100429.
Teng, Z. Y.; Zhang, Q. T.; Yang, H. B.; Kato, K.; Yang, W. J.; Lu, Y. R.; Liu, S. X.; Wang, C. Y.; Yamakata, A.; Su, C. L. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 2021, 4, 374–384.
Zhang, W. J.; Jiang, M. H.; Yang, S. Y.; Hu, Y.; Mu, B.; Tie, Z.; Jin, Z. In-situ grown CuOx nanowire forest on copper foam: A 3D hierarchical and freestanding electrocatalyst with enhanced carbonaceous product selectivity in CO2 reduction. Nano Res. Energy 2022, 1, e9120033.
Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1, e9120028.
Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, e9120027.
Cheng, Y.; Shen, P.; Li, X.; Li, X.; Chu, K.; Guo, Y. Synergistically enhanced peroxidase-like activity of Fe3O4/Ti3C2 MXene quantum dots and its application in colorimetric determination of Cr(VI). Sensor. Actuat. B: Chem. 2023, 376, 132979.
Shen, P.; Wang, G. H.; Chen, K.; Kang, J. L.; Ma, D. W.; Chu, K. Selenium-vacancy-rich WSe2 for nitrate electroreduction to ammonia. J. Colloid Interface Sci. 2023, 629, 563–570.
Xu, G. R.; Li, H.; Bati, A. S. R.; Bat-Erdene, M.; Nine, M. J.; Losic, D.; Chen, Y.; Shapter, J. G.; Batmunkh, M.; Ma, T. Y. Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis. J. Mater. Chem. A 2020, 8, 15875–15883.
Luo, Y. J.; Chen, K.; Shen, P.; Li, X. C.; Li, X. T.; Li, Y. H.; Chu, K. B-doped MoS2 for nitrate electroreduction to ammonia. J. Colloid Interface Sci. 2023, 629, 950–957.
Li, X. T.; Shen, P.; Li, X. C.; Ma, D. W.; Chu, K. Sub-nm RuOx clusters on Pd metallene for synergistically enhanced nitrate electroreduction to ammonia. ACS Nano 2023, 17, 1081–1090.
Wang, G. H.; Shen, P.; Luo, Y. J.; Li, X. T.; Li, X. C.; Chu, K. A vacancy engineered MnO2−x electrocatalyst promotes nitrate electroreduction to ammonia. Dalton Trans. 2022, 51, 9206–9212.
Chu, K.; Luo, Y. J.; Shen, P.; Li, X. C.; Li, Q. Q.; Guo, Y. L. Unveiling the synergy of O-vacancy and heterostructure over MoO3−x/MXene for N2 electroreduction to NH3. Adv. Energy. Mater. 2022, 12, 2103022.
Li, Q. Q.; Shen, P.; Tian, Y.; Li, X. C.; Chu, K. Metal-free BN quantum dots/graphitic C3N4 heterostructure for nitrogen reduction reaction. J. Colloid Interface Sci. 2022, 606, 204–212.
Chu, K.; Wang, J.; Liu, Y.; Li, Q.; Guo, Y. Mo-doped SnS2 with enriched S-vacancies for highly efficient electrocatalytic N2 reduction: The critical role of the Mo-Sn-Sn trimer. J. Mater. Chem. A 2020, 8, 7117–7124.
Chu, K.; Liu, Y. P.; Cheng, Y. H.; Li, Q. Q. Synergistic boron-dopants and boron-induced oxygen vacancies in MnO2 nanosheets to promote electrocatalytic nitrogen reduction. J. Mater. Chem. A 2020, 8, 5200–5208.
Li, Y. B.; Cheng, C. Q.; Han, S. H.; Huang, Y. M.; Du, X. W.; Zhang, B.; Yu, Y. F. Electrocatalytic reduction of low-concentration nitric oxide into ammonia over Ru nanosheets. ACS Energy Lett. 2022, 7, 1187–1194.
Shi, J. W.; Wang, C. H.; Yang, R.; Chen, F. P.; Meng, N. N.; Yu, Y. F.; Zhang, B. Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping. Sci. China Chem. 2021, 64, 1493–1497.
Wu, D. H.; Lv, P.; Wu, J. R.; He, B. L.; Li, X.; Chu, K.; Jia, Y.; Ma, D. W. Catalytic active centers beyond transition metals: Atomically dispersed alkaline-earth metals for the electroreduction of nitrate to ammonia. J. Mater. Chem. A 2023, 11, 1817–1828.
He, B. L.; Lv, P.; Wu, D. H.; Li, X.; Zhu, R.; Chu, K.; Ma, D. W.; Jia, Y. Confinement catalysis of a single atomic vacancy assisted by aliovalent ion doping enabled efficient NO electroreduction to NH3. J. Mater. Chem. A 2022, 10, 18690–18700.
Cheng, Y. H.; Li, X. C.; Shen, P.; Guo, Y. L.; Chu, K. MXene quantum dots/copper nanocomposites for synergistically enhanced N2 electroreduction. Energy Environ. Mater. 2023, 6, e12268.
Shen, P.; Li, X. C.; Luo, Y. J.; Guo, Y. L.; Zhao, X. L.; Chu, K. High-efficiency N2 electroreduction enabled by Se-vacancy-rich WSe2−x in water-in-salt electrolytes. ACS Nano 2022, 16, 7915–7925.
Chu, K.; Li, X. C.; Li, Q. Q.; Guo, Y. L.; Zhang, H. Synergistic enhancement of electrocatalytic nitrogen reduction over boron nitride quantum dots decorated Nb2CTx-MXene. Small 2021, 17, 2102363.