AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Promoting polysulfide conversions via cobalt single-atom catalyst for fast and durable lithium-sulfur batteries

Ziwei Wang1Yuwen Cheng1Shanying Wang1Jie Xu1( )Bo Peng1Dan Luo2( )Lianbo Ma1,3( )
Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials & School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Hong Kong 999077, China
Show Author Information

Graphical Abstract

A cobalt single-atom (CoSA) catalyst comprising of atomic Co distributed homogeneously within nitrogen (N)-doped porous carbon (Co-NPC) nanosphere is constructed and utilized as a separator coating in Li-S batteries.

Abstract

Although promising strategies have been developed to resolve the critical drawbacks of lithium-sulfur (Li-S) batteries, the intractable issues including undesirable shuttling of polysulfides and sluggish redox reaction kinetics have still been unresolved thoroughly. Herein, a cobalt single-atom (CoSA) catalyst comprising of atomic Co distributed homogeneously within nitrogen (N)-doped porous carbon (Co-NPC) nanosphere is constructed and utilized as a separator coating in Li-S batteries. The Co-NPC exposes abundant active sites participating in sulfur redox reactions, and remarkable catalytic activity boosting the rapid polysulfide conversions. As a result, Li-S batteries with Co-NPC coating layer realize significantly enhanced specific capacity (1295 mAh·g−1 at 0.2 C), rate capability (753 mAh·g−1 at 3.0 C), and long-life cyclic stability (601 mAh·g−1 after 500 cycles at 1.0 C). Increasing the areal sulfur loading to 6.2 mg·cm−2, an extremely high areal capacity of 7.92 mAh·cm−2 is achieved. Further in situ X-ray diffraction, density functional theory calculations, and secondary ion mass spectrometry confirm the high catalytic capability of CoSA towards reversible polysulfide conversion. This study supplies new insights for adopting single-atom catalyst to upgrade the electrochemical performance of Li-S batteries.

Electronic Supplementary Material

Download File(s)
12274_2023_5557_MOESM1_ESM.pdf (1.2 MB)
12274_2023_5557_MOESM2_ESM.pdf (405.9 KB)

References

[1]

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

[2]

Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

[3]

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

[4]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

[5]
Kang, Q.; Zhuang, Z. C.; Li, Y.; Zuo, Y. Z.; Wang, J.; Liu, Y. J.; Shi, C. Q.; Chen, J.; Li, H. F.; Jiang, P. K. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res., in press, https://doi.org/10.1007/s12274-023-5478-4.
[6]

Ma, L. B.; Qian, J.; Li, Y. T.; Cheng, Y. W.; Wang, S. Y.; Wang, Z. W.; Peng, C.; Wu, K. L.; Xu, J.; Manke, I. et al. Binary metal single atom electrocatalysts with synergistic catalytic activity toward high-rate and high areal-capacity lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2208666.

[7]

Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Single-atom yttrium engineering Janus electrode for rechargeable Na-S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.

[8]

Li, X.; Guan, Q. H.; Zhuang, Z. C.; Zhang, Y. Z.; Lin, Y. H.; Wang, J.; Shen, C. Y.; Lin, H. Z.; Wang, Y. L.; Zhan, L. et al. Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li-S battery. ACS Nano 2023, 17, 1653–1662.

[9]
Wang, S. Y.; Wang, Z. W.; Chen, F. Z.; Peng, B.; Xu, J.; Li, J. Z.; Lv, Y. H.; Kang, Q.; Xia, A. L.; Ma, L. B. Electrocatalysts in lithium-sulfur batteries. Nano Res., in press, https://doi.org/10.1007/s12274-022-5215-4.
[10]

Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 2203540.

[11]

Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

[12]

Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium-sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006.

[13]

Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

[14]

Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

[15]

Jeong, Y. C.; Kim, J. H.; Nam, S.; Park, C. R.; Yang, S. J. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries. Adv. Funct. Mater. 2018, 28, 1707411.

[16]

Yao, H. B.; Yan, K.; Li, W. Y.; Zheng, G. Y.; Kong, D. S.; Seh, Z. W.; Narasimhan, V. K.; Liang, Z.; Cui, Y. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface. Energy Environ. Sci. 2014, 7, 3381–3390.

[17]

Xu, J.; Tang, W. Q.; Yang, C.; Manke, I.; Chen, N.; Lai, F. L.; Xu, T.; An, S. H.; Liu, H. L.; Zhang, Z. L. et al. A highly conductive COF@CNT electrocatalyst boosting polysulfide conversion for Li-S chemistry. ACS Energy Lett. 2021, 6, 3053–3062.

[18]

Wei, Z. Z.; Zhang, N. X.; Feng, T.; Wu, F.; Zhao, T.; Chen, R. J. A copolymer microspheres-coated separator to enhance thermal stability of lithium-sulfur batteries. Chem. Eng. J. 2022, 430, 132678.

[19]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[20]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Power Mater. 2022, 1, 100013.

[21]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[22]

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

[23]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[24]

Xie, J.; Li, B. Q.; Peng, H. J.; Song, Y. W.; Zhao, M.; Chen, X.; Zhang, Q.; Huang, J. Q. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries. Adv. Mater. 2019, 31, 1903813.

[25]

Ma, C.; Zhang, Y. Q.; Feng, Y. M.; Wang, N.; Zhou, L. J.; Liang, C. P.; Chen, L. B.; Lai, Y. Q.; Ji, X. B.; Yan, C. L. et al. Engineering Fe-N coordination structures for fast redox conversion in lithium-sulfur batteries. Adv. Mater. 2021, 33, 2100171.

[26]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Kang, Q. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[27]

Ma, F.; Wan, Y. Y.; Wang, X. M.; Wang, X. C.; Liang, J. S.; Miao, Z. P.; Wang, T. Y.; Ma, C.; Lu, G.; Han, J. T. et al. Bifunctional atomically dispersed Mo-N2/C nanosheets boost lithium sulfide deposition/decomposition for stable lithium-sulfur batteries. ACS Nano 2020, 14, 10115–10126.

[28]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[29]

Wu, K. L.; Zhan, F.; Tu, R. Y.; Cheong, W. C.; Cheng, Y. S.; Zheng, L. R.; Yan, W. S.; Zhang, Q. H.; Chen, Z.; Chen, C. Dopamine polymer derived isolated single-atom site metals/N-doped porous carbon for benzene oxidation. Chem. Commun. 2020, 56, 8916–8919.

[30]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[31]

Dilpazir, S.; He, H. Y.; Li, Z. H.; Wang, M.; Lu, P. L.; Liu, R. J.; Xie, Z. J.; Gao, D. L.; Zhang, G. J. Cobalt single atoms immobilized N-doped carbon nanotubes for enhanced bifunctional catalysis toward oxygen reduction and oxygen evolution reactions. ACS Appl. Energy Mater. 2018, 1, 3283–3291.

[32]

Guo, D. Y.; Zhang, X.; Liu, M. L.; Yu, Z. S.; Chen, X. A.; Yang, B.; Zhou, Z.; Wang, S. Single Mo-N4 atomic sites anchored on N-doped carbon nanoflowers as sulfur host with multiple immobilization and catalytic effects for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2204458.

[33]

Li, W. H.; Ye, B. C.; Yang, J. R.; Wang, Y.; Yang, C. J.; Pan, Y. M.; Tang, H. T.; Wang, D. S.; Li, Y. D. A single-atom cobalt catalyst for the fluorination of acyl chlorides at parts-per-million catalyst loading. Angew. Chem., Int. Ed. 2022, 61, e202209749.

[34]

Sun, T. T.; Zhao, S.; Chen, W. X.; Zhai, D.; Dong, J. C.; Wang, Y.; Zhang, S. L.; Han, A. J.; Gu, L.; Yu, R. et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Nat. Acad. Sci. USA 2018, 115, 12692–12697.

[35]

Pan, Y.; Li, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

[36]

Huang, X.; Wang, Z. L.; Knibbe, R.; Luo, B.; Ahad, S. A.; Sun, D.; Wang, L. Z. Cyclic voltammetry in lithium-sulfur batteries-challenges and opportunities. Energy Technol. 2019, 7, 1801001.

[37]

Geng, C. N.; Hua, W. X.; Wang, D. W.; Ling, G. W.; Zhang, C.; Yang, Q. H. Demystifying the catalysis in lithium-sulfur batteries: Characterization methods and techniques. SusMat 2021, 1, 51–65.

[38]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, B.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[39]

Wang, H.; Adams, B. D.; Pan, H. L.; Zhang, L.; Han, K. S.; Estevez, L.; Lu, D. P.; Jia, H. P.; Feng, J.; Guo, J. H. et al. Tailored reaction route by micropore confinement for Li-S batteries operating under lean electrolyte conditions. Adv. Energy Mater. 2018, 8, 1800590.

[40]

Shen, C.; Xie, J. X.; Zhang, M.; Andrei, P.; Zheng, J. P.; Hendrickson, M.; Plichta, E. J. A Li-Li2S4 battery with improved discharge capacity and cycle life at low electrolyte/sulfur ratios. J. Power Sources 2019, 414, 412–419.

[41]

Zhan, Y.; Buffa, A.; Yu, L. H.; Xu, Z. J.; Mandler, D. Electrodeposited sulfur and CoxS electrocatalyst on buckypaper as high-performance cathode for Li-S batteries. Nano-Micro Lett. 2020, 12, 141.

[42]

Qian, J.; Wang, F. J.; Li, Y.; Wang, S.; Zhao, Y. Y.; Li, W. L.; Xing, Y.; Deng, L.; Sun, Q.; Li, L. et al. Electrocatalytic interlayer with fast lithium-polysulfides diffusion for lithium-sulfur batteries to enhance electrochemical kinetics under lean electrolyte conditions. Adv. Funct. Mater. 2020, 30, 2000742.

[43]

Xu, J.; Zhang, W. X.; Fan, H. B.; Cheng, F. L.; Su, D. W.; Wang, G. X. Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium-sulfur battery. Nano Energy 2018, 51, 73–82.

[44]

Yang, J. L.; Cai, D. Q.; Lin, Q. W.; Wang, X. Y.; Fang, Z. Q.; Huang, L.; Wang, Z. J.; Hao, X. G.; Zhao, S. X.; Li, J. et al. Regulating the Li2S deposition by grain boundaries in metal nitrides for stable lithium-sulfur batteries. Nano Energy 2022, 91, 106669.

[45]

Cañas, N. A.; Wolf, S.; Wagner, N.; Friedrich, K. A. In-situ X-ray diffraction studies of lithium-sulfur batteries. J. Power Sources 2013, 226, 313–319.

[46]

Hou, W. S.; Feng, P. L.; Guo, X.; Wang, Z. H.; Bai, Z.; Bai, Y.; Wang, G. X.; Sun, K. N. Catalytic mechanism of oxygen vacancies in perovskite oxides for lithium-sulfur batteries. Adv. Mater. 2022, 34, 2202222.

[47]

Weng, W.; Xiao, J. X.; Shen, Y. J.; Liang, X. X.; Lv, T.; Xiao, W. Molten salt electrochemical modulation of iron-carbon-nitrogen for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2021, 60, 24905–24909.

[48]

Peng, L. L.; Wei, Z. Y.; Wan, C. Z.; Li, J.; Chen, Z.; Zhu, D.; Baumann, D.; Liu, H. T.; Allen, C. S.; Xu, X. et al. A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 2020, 3, 762–770.

[49]

Zeng, Z. H.; Nong, W.; Li, Y.; Wang, C. X. Universal-descriptors-guided design of single atom catalysts toward oxidation of Li2S in lithium-sulfur batteries. Adv. Sci. 2021, 8, 2102809.

[50]

Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.

[51]

Wang, R. R.; Wu, R. B.; Yan, X. X.; Liu, D.; Guo, P. F.; Li, W.; Pan, H. G. Implanting single Zn atoms coupled with metallic Co nanoparticles into porous carbon nanosheets grafted with carbon nanotubes for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2200424.

[52]

Li, Y. J.; Wu, J. B.; Zhang, B.; Wang, W. Y.; Zhang, G. Q.; Seh, Z. W.; Zhang, N.; Sun, J.; Huang, L.; Jiang, J. J. et al. Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms. Energy Storage Mater. 2020, 30, 250–259.

[53]

Zhou, X.; Meng, R. J.; Zhong, N.; Yin, S. F.; Ma, G. Q.; Liang, X. Size-dependent cobalt catalyst for lithium sulfur batteries: From single atoms to nanoclusters and nanoparticles. Small Methods 2021, 5, 2100571.

[54]

Zhang, S. L.; Ao, X.; Huang, J.; Wei, B.; Zhai, Y. L.; Zhai, D.; Deng, W. Q.; Su, C. L.; Wang, D. S.; Li, Y. D. Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021, 21, 9691–9698.

[55]

Wang, J. Y.; Qiu, W. B.; Li, G. R.; Liu, J. B.; Luo, D.; Zhang, Y. G.; Zhao, Y.; Zhou, G. F.; Shui, L. L.; Wang, X. et al. Coordinatively deficient single-atom Fe-N-C electrocatalyst with optimized electronic structure for high-performance lithium-sulfur batteries. Energy Storage Mater. 2022, 46, 269–277.

[56]

Kim, J.; Kim, S. J.; Jung, E.; Mok, D. H.; Paidi, V. K.; Lee, J.; Lee, H. S.; Jeoun, Y.; Ko, W.; Shin, H. et al. Atomic structure modification of Fe-N-C catalysts via morphology engineering of graphene for enhanced conversion kinetics of lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2110857.

[57]

Fan, X. Y.; Chen, S.; Gong, W. B.; Meng, X. D.; Jia, Y. C.; Wang, Y. L.; Hong, S.; Zheng, L.; Zheng, L. R.; Bielawski, C. W. et al. A conjugated porous polymer complexed with a single-atom cobalt catalyst as an electrocatalytic sulfur host for enhancing cathode reaction kinetics. Energy Storage Mater. 2021, 41, 14–23.

[58]

Li, Y. J.; Chen, G. L.; Mou, J. R.; Liu, Y. Z.; Xue, S. F.; Tan, T.; Zhong, W. T.; Deng, Q.; Li, T.; Hu, J. H. et al. Cobalt single atoms supported on N-doped carbon as an active and resilient sulfur host for lithium-sulfur batteries. Energy Storage Mater. 2020, 28, 196–204.

[59]

Zhang, Y. G.; Liu, J. B.; Wang, J. Y.; Zhao, Y.; Luo, D.; Yu, A. P.; Wang, X.; Chen, Z. W. Engineering oversaturated Fe-N5 multifunctional catalytic sites for durable lithium-sulfur batteries. Angew. Chem., Int. Ed. 2021, 60, 26622–26629.

[60]

Chen, C. Y.; Peng, H. J.; Hou, T. Z.; Zhai, P. Y.; Li, B. Q.; Tang, C.; Zhu, W. C.; Huang, J. Q.; Zhang, Q. A quinonoid-imine-enriched nanostructured polymer mediator for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1606802.

[61]

Cai, W. L.; Li, G. R.; Zhang, K. L.; Xiao, G. N.; Wang, C.; Ye, K. F.; Chen, Z. W.; Zhu, Y. C.; Qian, Y. T. Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1704865.

[62]

Zhang, S. Z.; Zhong, N.; Zhou, X.; Zhang, M. J.; Huang, X. P.; Yang, X. L.; Meng, R. J.; Liang, X. Comprehensive design of the high-sulfur-loading Li-S battery based on MXene nanosheets. Nano-Micro Lett. 2020, 12, 112.

[63]

Lv, X. X.; Lei, T. Y.; Wang, B. J.; Chen, W.; Jiao, Y.; Hu, Y.; Yan, Y. C.; Huang, J. W.; Chu, J. W.; Yan, C. Y. et al. An efficient separator with low Li-ion diffusion energy barrier resolving feeble conductivity for practical lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1901800.

[64]

Zhang, L. L.; Chen, X.; Wan, F.; Niu, Z. Q.; Wang, Y. J.; Zhang, Q.; Chen, J. Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium-sulfur batteries. ACS Nano 2018, 12, 9578–9586.

[65]

Jiang, S. F.; Huang, S.; Yao, M. J.; Zhu, J. C.; Liu, L. L.; Niu, Z. Q. Bimetal-organic frameworks derived Co/N-doped carbons for lithium-sulfur batteries. Chin. Chem. Lett. 2020, 31, 2347–2352.

[66]

Tian, Y.; Li, G. R.; Zhang, Y. G.; Luo, D.; Wang, X.; Zhao, Y.; Liu, H.; Ji, P. G.; Du, X. H.; Li, J. D. et al. Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium-sulfur batteries. Adv. Mater. 2020, 32, 1904876.

[67]

Jin, H. G.; Wang, M. Y.; Wen, J. X.; Han, S. H.; Hong, X. J.; Cai, Y. P.; Li, G. L.; Fan, J. C.; Chao, Z. S. Oxygen vacancy-rich mixed-valence cerium MOF: An efficient separator coating to high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 3899–3910.

Nano Research
Pages 9335-9343
Cite this article:
Wang Z, Cheng Y, Wang S, et al. Promoting polysulfide conversions via cobalt single-atom catalyst for fast and durable lithium-sulfur batteries. Nano Research, 2023, 16(7): 9335-9343. https://doi.org/10.1007/s12274-023-5557-6
Topics:

876

Views

14

Crossref

13

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 17 January 2023
Revised: 03 February 2023
Accepted: 07 February 2023
Published: 13 March 2023
© Tsinghua University Press 2023
Return