AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Boosting alkaline hydrogen evolution performance by constructing ultrasmall Ru clusters/Na+, K+-decorated porous carbon composites

Mingxiu Duan1Tie Shu2Jingwei Li3Daliang Zhang3Li-Yong Gan4( )Ke Xin Yao2,3( )Qiang Yuan1( )
State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
Show Author Information

Graphical Abstract

Hydrophilic nanocomposites of Ru clusters (~ 1.30 nm) anchored on Na+, K+-decorated porous carbon (Ru/Na+, K+-PC) have been achieved. The Ru/Na+, K+-PC exhibits ultralow overpotential of 7 mV at 10 mA·cm−2 and long-term durability of 20,000 cycles potential cycling and 200 h chronopotentiometric measurement with a negligible decrease in activity.

Abstract

The construction of efficient and durable electrocatalysts with highly dispersed metal clusters and hydrophilic surface for alkaline hydrogen evolution reaction (HER) remains a great challenge. Herein, we prepared hydrophilic nanocomposites of Ru clusters (~ 1.30 nm) anchored on Na+, K+-decorated porous carbon (Ru/Na+, K+-PC) through hydrothermal method and subsequent annealing treatment at 500 °C. The Ru/Na+, K+-PC exhibits ultralow overpotential of 7 mV at 10 mA·cm−2, mass activity of 15.7 A·mgRu−1 at 100 mV, and long-term durability of 20,000 cycles potential cycling and 200 h chronopotentiometric measurement with a negligible decrease in activity, much superior to benchmarked commercial Pt/C. Density functional theory based calculations show that the energy barrier of H–OH bond breaking is efficiently reduced due to the presence of Na and K ions, thus favoring the Volmer step. Furthermore, the Ru/Na+, K+-PC effectively employs solar energy for obtaining H2 in both alkaline water and seawater electrolyzer. This finding provides a new strategy to construct high-performance and cost-effective alkaline HER electrocatalyst.

Electronic Supplementary Material

Video
12274_2023_5558_MOESM4_ESM.mp4
12274_2023_5558_MOESM2_ESM.mp4
12274_2023_5558_MOESM3_ESM.mp4
Download File(s)
12274_2023_5558_MOESM1_ESM.pdf (2.5 MB)

References

[1]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[2]

Karunadasa, H. I.; Chang, C. J.; Long, J. R. A molecular molybdenum-oxo catalyst for generating hydrogen from water. Nature 2010, 464, 1329–1333.

[3]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[4]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[5]

Chen, X. Y.; Wan, J. W.; Wang, J.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Wang, N.; Yu, R. B. Atomically dispersed ruthenium on nickel hydroxide ultrathin nanoribbons for highly efficient hydrogen evolution reaction in alkaline media. Adv. Mater. 2021, 33, 2104764.

[6]
Liu, X.; Fang, Z. Y.; Xiong, D. K.; Gong, S. Q.; Niu, Y. L.; Chen, W.; Chen, Z. F. Upcycling PET in parallel with energy-saving H2 production via bifunctional nickel-cobalt nitride nanosheets. Nano Res., in press, https://doi.org/10.1007/s12274-022-5085-9.
[7]

Li, C.; Jang, H.; Liu, S. G.; Kim, M. G.; Hou, L. Q.; Liu, X. E.; Cho, J. P and Mo dual doped Ru ultrasmall nanoclusters embedded in P-doped porous carbon toward efficient hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2200029.

[8]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[9]

Lu, B. Z.; Guo, L.; Wu, F.; Peng, Y.; Lu, J. E.; Smart, T. J.; Wang, N.; Finfrock, Y. Z.; Morris, D.; Zhang, P. et al. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 2019, 10, 631.

[10]

Liu, X.; Fang, Z. Y.; Teng, X.; Niu, Y. L.; Gong, S. Q.; Chen, W.; Meyer, T. J.; Chen, Z. F. Paired formate and H2 productions via efficient bifunctional Ni-Mo nitride nanowire electrocatalysts. J. Energy Chem. 2022, 72, 432–441.

[11]

Chen, J. D.; Qin, M. K.; Ma, S. X.; Fan, R. X.; Zheng, X. Z.; Mao, S. J.; Chen, C. H.; Wang, Y. Rational construction of Pt/PtTex interface with optimal intermediate adsorption energy for efficient hydrogen evolution reaction. Appl. Catal. B: Environ. 2021, 299, 120640.

[12]

Lu, X. F.; Yu, L.; Lou, X. W. Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts. Sci. Adv. 2019, 5, eaav6009.

[13]

Subbaraman, R.; Tripkovic, D.; Chang, K. C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 2012, 11, 550–557.

[14]

Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K. C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 2011, 334, 1256–1260.

[15]

Yao, R. Q.; Zhou, Y. T.; Shi, H.; Wan, W. B.; Zhang, Q. H.; Gu, L.; Zhu, Y. F.; Wen, Z.; Lang, X. Y.; Jiang, Q. Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction. Adv. Funct. Mater. 2021, 31, 2009613.

[16]

Zhao, X.; Li, X. Y.; Xiao, D. D.; Gong, M. X.; An, L. L.; Gao, P. F.; Yang, J. L.; Wang, D. L. Isolated Pd atom anchoring endows cobalt diselenides with regulated water-reduction kinetics for alkaline hydrogen evolution. Appl. Catal. B: Environ. 2021, 295, 120280.

[17]

Zhu, F. Y.; Xue, J. Y.; Zeng, L. J.; Shang, J. R.; Lu, S. L.; Cao, X. Q.; Abrahams, B. F.; Gu, H. W.; Lang, J. P. One-pot pyrolysis synthesis of highly active Ru/RuOx nanoclusters for water splitting. Nano Res. 2022, 15, 1020–1026.

[18]

Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

[19]

Dang, Y. L.; Wu, T. L.; Tan, H. Y.; Wang, J. L.; Cui, C.; Kerns, P.; Zhao, W.; Posada, L.; Wen, L. Y.; Suib, S. L. Partially reduced Ru/RuO2 composites as efficient and pH-universal electrocatalysts for hydrogen evolution. Energy Environ. Sci. 2021, 14, 5433–5443.

[20]

Liu, Q.; Zhang, C. T.; Wang, P. Y.; Chen, D.; Xiao, M. J.; Chen, L.; Liu, S. L.; Yu, J.; Mu, S. C. Nearly hollow Ru-Cu-MoO2 octahedrons consisting of clusters and nanocrystals for high efficiency hydrogen evolution reaction. J. Mater. Chem. A 2022, 10, 12341–12349.

[21]

Chen, L. W.; Guo, X.; Shao, R. Y.; Yan, Q. Q.; Zhang, L. L.; Li, Q. X.; Liang, H. W. Structurally ordered intermetallic Ir3V electrocatalysts for alkaline hydrogen evolution reaction. Nano Energy 2021, 81, 105636.

[22]

Zhang, D.; Miao, H. F.; Wu, X. K.; Wang, Z. C.; Zhao, H.; Shi, Y.; Chen, X. L.; Xiao, Z. Y.; Lai, J. P.; Wang, L. Scalable synthesis of ultra-small Ru2P@Ru/CNT for efficient seawater splitting. Chin. J. Catal. 2022, 43, 1148–1155.

[23]

Li, L. G.; Liu, C.; Liu, S. H.; Wang, J.; Han, J. J.; Chan, T. S.; Li, Y. Y.; Hu, Z. W.; Shao, Q.; Zhang, Q. B. et al. Phase engineering of a ruthenium nanostructure toward high-performance bifunctional hydrogen catalysis. ACS Nano 2022, 16, 14885–14894.

[24]

Chen, D.; Lu, R. H.; Yu, R. H.; Dai, Y. H.; Zhao, H. Y.; Wu, D. L.; Wang, P. Y.; Zhu, J. W.; Pu, Z. H.; Chen, L. et al. Work-function-induced interfacial built-in electric fields in Os-OsSe2 heterostructures for active acidic and alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202208642.

[25]

Sun, X. Z.; Gao, X. Y.; Chen, J.; Wang, X.; Chang, H. X.; Li, B.; Song, D. M.; Li, J.; Li, H. S.; Wang, N. Ultrasmall Ru nanoparticles highly dispersed on sulfur-doped graphene for HER with high electrocatalytic performance. ACS Appl. Mater. Interfaces 2020, 12, 48591–48597.

[26]

Zhang, H.; Su, H.; Soldatov, M. A.; Li, Y. L.; Zhao, X.; Liu, M. H.; Zhou, W. L.; Zhang, X. X.; Sun, X.; Xu, Y. Z. et al. Dynamic Co–Ru bond shrinkage at atomically dispersed Ru sites for alkaline hydrogen evolution reaction. Small 2021, 17, 2105231.

[27]

Ma, R. P.; Wang, X.; Yang, X. L.; Li, Y.; Liu, C. P.; Ge, J. J.; Xing, W. Identification of active sites and synergistic effect in multicomponent carbon-based Ru catalysts during electrocatalytic hydrogen evolution. Nano Res. 2023, 16, 166–173.

[28]

Qin, X. P.; Zhang, L. L.; Xu, G. L.; Zhu, S. Q.; Wang, Q.; Gu, M.; Zhang, X. Y.; Sun, C. J.; Balbuena, P. B.; Amine, K. et al. The role of Ru in improving the activity of Pd toward hydrogen evolution and oxidation reactions in alkaline solutions. ACS Catal. 2019, 9, 9614–9621.

[29]

Zhang, J. M.; Xu, X. P.; Yang, L.; Cheng, D. J.; Cao, D. P. Single-atom Ru doping induced phase transition of MoS2 and S vacancy for hydrogen evolution reaction. Small Methods 2019, 3, 1900653.

[30]

Wu, K. L.; Sun, K. A.; Liu, S. J.; Cheong, W. C.; Chen, Z.; Zhang, C.; Pan, Y.; Cheng, Y. S.; Zhuang, Z. W.; Wei, X. W. et al. Atomically dispersed Ni–Ru–P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution. Nano Energy 2021, 80, 105467.

[31]

Yan, B. L.; Liu, D. P.; Feng, X. L.; Shao, M. Z.; Zhang, Y. Ru species supported on MOF-derived N-doped TiO2/C hybrids as efficient electrocatalytic/photocatalytic hydrogen evolution reaction catalysts. Adv. Funct. Mater. 2020, 30, 2003007.

[32]

Li, F.; Han, G. F.; Noh, H. J.; Ahmad, I.; Jeon, I. Y.; Baek, J. B. Mechanochemically assisted synthesis of a Ru catalyst for hydrogen evolution with performance superior to Pt in both acidic and alkaline media. Adv. Mater. 2018, 30, 1803676.

[33]

Sun, S. W.; Wang, G. F.; Zhou, Y.; Wang, F. B.; Xia, X. H. High-performance Ru@C4N electrocatalyst for hydrogen evolution reaction in both acidic and alkaline solutions. ACS Appl. Mater. Interfaces 2019, 11, 19176–19182.

[34]

Chen, Y. J.; Li, J.; Wang, N.; Zhou, Y. N.; Zheng, J.; Chu, W. Plasma-assisted highly dispersed Pt single atoms on Ru nanoclusters electrocatalyst for pH-universal hydrogen evolution. Chem. Eng. J. 2022, 448, 137611.

[35]

Zhang, L. N.; Lang, Z. L.; Wang, Y. H.; Tan, H. Q.; Zang, H. Y.; Kang, Z. H.; Li, Y. G. Cable-like Ru/WNO@C nanowires for simultaneous high-efficiency hydrogen evolution and low-energy consumption chlor-alkali electrolysis. Energy Environ. Sci. 2019, 12, 2569–2580.

[36]

Wang, X. L.; Li, J. W.; Yang, X. T.; Zhao, F. L.; Li, Y. F.; Zhang, D. L.; Gan, L. Y.; Yao, K. X.; Yuan, Q. Low-coordinated surface sites make truncated Pd tetrahedrons as robust ORR electrocatalysts outperforming Pt for DMFC devices. Nano Res. 2022, 15, 7951–7958.

[37]

Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446.

[38]

Hu, Q.; Gao, K. R.; Wang, X. D.; Zheng, H. J.; Cao, J. Y.; Mi, L. R.; Huo, Q. H.; Yang, H. P.; Liu, J. H.; He, C. X. Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 3958.

[39]

Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N.; van der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 2013, 5, 300–306.

[40]

Wang, J.; Wei, Z. Z.; Mao, S. J.; Li, H. R.; Wang, Y. Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ. Sci. 2018, 11, 800–806.

[41]

Li, W. Q.; Zhang, H.; Zhang, K.; Hu, W. X.; Cheng, Z. Z.; Chen, H. P.; Feng, X.; Peng, T.; Kou, Z. K. Monodispersed ruthenium nanoparticles interfacially bonded with defective nitrogen-and-phosphorus-doped carbon nanosheets enable pH-universal hydrogen evolution reaction. Appl. Catal. B: Environ. 2022, 306, 121095.

[42]

Chen, L. N.; Wang, S. H.; Zhang, P. Y.; Chen, Z. X.; Lin, X.; Yang, H. J.; Sheng, T.; Lin, W. F.; Tian, N.; Sun, S. G. et al. Ru nanoparticles supported on partially reduced TiO2 as highly efficient catalyst for hydrogen evolution. Nano Energy 2021, 88, 106211.

[43]

Zhou, S. Z.; Jang, H.; Qin, Q.; Hou, L. Q.; Kim, M. G.; Liu, S. G.; Liu, X. E.; Cho, J. Boosting hydrogen evolution reaction by phase engineering and phosphorus doping on Ru/P-TiO2. Angew. Chem., Int. Ed. 2022, 61, e202212196.

[44]

Jiang, Z. L.; Song, S. J.; Zheng, X. B.; Liang, X.; Li, Z. X.; Gu, H. F.; Li, Z.; Wang, Y.; Liu, S. H.; Chen, W. X. et al. Lattice strain and Schottky junction dual regulation boosts ultrafine ruthenium nanoparticles anchored on a N-modified carbon catalyst for H2 production. J. Am. Chem. Soc. 2022, 144, 19619–19626.

[45]

Kong, A. Q.; Peng, M.; Gu, H. Z.; Zhao, S. C.; Lv, Y.; Liu, M. H.; Sun, Y. W.; Dai, S. D.; Fu, Y.; Zhang, J. L. et al. Synergetic control of Ru/MXene 3D electrode with superhydrophilicity and superaerophobicity for overall water splitting. Chem. Eng. J. 2021, 426, 131234.

[46]

Meng, G.; Tian, H.; Peng, L. X.; Ma, Z. H.; Chen, Y. F.; Chen, C.; Chang, Z. W.; Cui, X. Z.; Shi, J. L. Ru to W electron donation for boosted HER from acidic to alkaline on Ru/WNO sponges. Nano Energy 2021, 80, 105531.

[47]

Zheng, J.; Sheng, W. C.; Zhuang, Z. B.; Xu, B. J.; Yan, Y. S. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2016, 2, e1501602.

[48]

Yang, B. B.; Xu, J. Y.; Bin, D.; Wang, J.; Zhao, J. Z.; Liu, Y. X.; Li, B. X.; Fang, X. N.; Liu, Y.; Qiao, L. et al. Amorphous phosphatized ruthenium-iron bimetallic nanoclusters with Pt-like activity for hydrogen evolution reaction. Appl. Catal. B: Environ. 2021, 283, 119583.

[49]

Shao, X. D.; Liang, M. F.; Kumar, A.; Liu, X. H.; Jin, H. Y.; Ajmal, S.; Bui, V. Q.; Bui, H. T. D.; Lee, J.; Tran, N. Q. et al. Amorphization of metal nanoparticles by 2D twisted polymer for super hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2102257.

[50]

Li, Y. J.; Liu, H. J.; Li, B.; Yang, Z. Z.; Guo, Z. G.; He, J. B.; Xie, J. H.; Lau, T. C. Ru single atoms and nanoclusters on highly porous N-doped carbon as a hydrogen evolution catalyst in alkaline solutions with ultrahigh mass activity and turnover frequency. J. Mater. Chem. A 2021, 9, 12196–12202.

[51]

Wang, M. M.; Sun, K. A.; Mi, W. L.; Feng, C.; Guan, Z. K.; Liu, Y. Q.; Pan, Y. Interfacial water activation by single-atom Co-N3 sites coupled with encapsulated Co nanocrystals for accelerating electrocatalytic hydrogen evolution. ACS Catal. 2022, 12, 10771–10780.

[52]

Zhu, S. Q.; Qin, X. P.; Yao, Y.; Shao, M. H. pH-dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy. J. Am. Chem. Soc. 2020, 142, 8748–8754.

[53]

Liu, Y.; Li, X.; Zhang, Q. H.; Li, W. D.; Xie, Y.; Liu, H. Y.; Shang, L.; Liu, Z. Y.; Chen, Z. M.; Gu, L. et al. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew. Chem., Int. Ed. 2020, 59, 1718–1726.

[54]

Liang, Q. R.; Li, Q. Z.; Xie, L.; Zeng, H.; Zhou, S.; Huang, Y. N.; Yan, M.; Zhang, X.; Liu, T. Y.; Zeng, J. et al. Superassembly of surface-enriched Ru nanoclusters from trapping-bonding strategy for efficient hydrogen evolution. ACS Nano 2022, 16, 7993–8004.

[55]

Shan, J. Q.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. Z. Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 2019, 31, 1900510.

[56]

Qian, C. Z.; Shao, W. Q.; Zhang, X. Y.; Mu, X. Q.; Gu, X. Y.; Yu, M.; Ma, L. G.; Liu, S. L.; Mu, S. C. Competitive coordination-pairing between Ru clusters and single-atoms for efficient hydrogen evolution reaction in alkaline seawater. Small 2022, 18, 2204155.

[57]

Li, J. P.; Wang, W. Y.; Chen, W. X.; Gong, Q. M.; Luo, J.; Lin, R. Q.; Xin, H. L.; Zhang, H.; Wang, D. S.; Peng, Q. et al. Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”. Nano Res. 2018, 11, 4774–4785.

[58]

Ye, S. H.; Luo, F. Y.; Xu, T. T.; Zhang, P. Y.; Shi, H. D.; Qin, S. Q.; Wu, J. P.; He, C. X.; Ouyang, X. P.; Zhang, Q. L. et al. Boosting the alkaline hydrogen evolution of Ru nanoclusters anchored on B/N-doped graphene by accelerating water dissociation. Nano Energy 2020, 68, 104301.

[59]

Li, H. D.; Han, Y.; Zhao, H.; Qi, W. J.; Zhang, D.; Yu, Y. D.; Cai, W. W.; Li, S. X.; Lai, J. P.; Huang, B. L. et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 2020, 11, 5437.

[60]

Kweon, D. H.; Okyay, M. S.; Kim, S. J.; Jeon, J. P.; Noh, H. J.; Park, N.; Mahmood, J.; Baek, J. B. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nat. Commun. 2020, 11, 1278.

[61]

Tu, K. J.; Tranca, D.; Rodríguez-Hernández, F.; Jiang, K. Y.; Huang, S. H.; Zheng, Q.; Chen, M. X.; Lu, C. B.; Su, Y. Z.; Chen, Z. Y. et al. A novel heterostructure based on RuMo nanoalloys and N-doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction. Adv. Mater. 2020, 32, 2005433.

[62]

Gu, X. Y.; Yu, M.; Chen, S. Q.; Mu, X. Q.; Xu, Z. H.; Shao, W. Q.; Zhu, J. J.; Chen, C. Y.; Liu, S. L.; Mu, S. C. Coordination environment of Ru clusters with in-situ generated metastable symmetry-breaking centers for seawater electrolysis. Nano Energy 2022, 102, 107656.

[63]

Zhai, P. L.; Xia, M. Y.; Wu, Y. Z.; Zhang, G. H.; Gao, J. F.; Zhang, B.; Cao, S. Y.; Zhang, Y. T.; Li, Z. W.; Fan, Z. Z. et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587.

[64]

Su, P. P.; Pei, W.; Wang, X. W.; Ma, Y. F.; Jiang, Q. K.; Liang, J.; Zhou, S.; Zhao, J. J.; Liu, J.; Lu, G. Q. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem., Int. Ed. 2021, 60, 16044–16050.

[65]

McCrum, I. T.; Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 2020, 5, 891–899.

[66]

Li, X.; Yao, K. X.; Zhao, F. L.; Yang, X. T.; Li, J. W.; Li, Y. F.; Yuan, Q. Interface-rich Au-doped PdBi alloy nanochains as multifunctional oxygen reduction catalysts boost the power density and durability of a direct methanol fuel cell device. Nano Res. 2022, 15, 6036–6044.

[67]

Huang, J. Z.; Han, J. C.; Wu, T.; Feng, K.; Yao, T.; Wang, X. J.; Liu, S. W.; Zhong, J.; Zhang, Z. H.; Zhang, Y. M. et al. Boosting hydrogen transfer during Volmer reaction at oxides/metal nanocomposites for efficient alkaline hydrogen evolution. ACS Energy Lett. 2019, 4, 3002–3010.

[68]

Zhang, W. J.; Feng, X.; Mao, Z. X.; Li, J.; Wei, Z. D. Stably immobilizing sub-3 nm high-entropy Pt alloy nanocrystals in porous carbon as durable oxygen reduction electrocatalyst. Adv. Funct. Mater. 2022, 32, 2204110.

Nano Research
Pages 8836-8844
Cite this article:
Duan M, Shu T, Li J, et al. Boosting alkaline hydrogen evolution performance by constructing ultrasmall Ru clusters/Na+, K+-decorated porous carbon composites. Nano Research, 2023, 16(7): 8836-8844. https://doi.org/10.1007/s12274-023-5558-5
Topics:

1144

Views

14

Crossref

16

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 15 November 2022
Revised: 07 February 2023
Accepted: 09 February 2023
Published: 13 March 2023
© Tsinghua University Press 2023
Return