AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Evoking robust immunogenic cell death by synergistic sonodynamic therapy and glucose depletion using Au clusters/single atoms modified TiO2 nanosheets

Xiuxin Lu1,§Kun Qiao2,§Firdoz Shaik3Yang Zheng4Zhaoyou Chu5Haisheng Qian5( )Xijun Liu6( )Weiqing Zhang1( )
Department of Research, Guangxi Medical University Cancer Hospital, Nanning 530021, China
Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research, Guntur 522213, India
Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, China
School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, China
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resource, Environments and Materials, Guangxi University, Nanning 530004, China

§ Xiuxin Lu and Kun Qiao contributed equally to this work.

Show Author Information

Graphical Abstract

A multifunctional AuS/C-TiO2 sonosensitizer with an excited band gap and high glucose oxidation activity is fabricated and used to evoke massive reactive oxygen species (ROS) and robust endoplasmic reticulum (ER) stress for reinforcing sonodynamic therapy-immunogenic cell death against breast cancer.

Abstract

Facilitated by reactive oxygen species (ROS)-involved therapies, tumor cells undergo immunogenic cell death (ICD) to stimulate long-term immunity response. However, it is hard to trigger abundant and large-scale ICD for satisfactory cancer immunotherapy. Herein, a multifunctional sonosensitizer that consists of Au single atoms and clusters anchored on TiO2 nanosheets (named AuS/C-TiO2) is reported for augmented sonodynamic therapy (SDT) and glucose depletion, which ultimately induce robust ICD due to the improved ROS generation and strong endoplasmic reticulum (ER) stress. The synergy effect between Au cluster/single atom with TiO2 nanosheets intensifies apoptosis and ICD pathways to inhibit 80% of tumor cells through in vivo analyses. Furthermore, immune cells in vivo analyses verify the effectiveness of AuS/C-TiO2 sonosensitizer towards the induction of antitumor immunity. This study thus reveals that simultaneous presence of ROS generation and strong ER stress can efficiently evoke a strong ICD-mediated immune response.

Electronic Supplementary Material

Download File(s)
12274_2023_5562_MOESM1_ESM.pdf (2.1 MB)

References

[1]

Krysko, D. V.; Garg, A. D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 2012, 12, 860–875.

[2]

Li, Y. H.; Liu, X. H.; Zhang, X.; Pan, W.; Li, N.; Tang, B. Immunogenic cell death inducers for enhanced cancer immunotherapy. Chem. Commun. (Camb. ) 2021, 57, 12087–12097.

[3]

Lu, J. Q.; Liu, X. S.; Liao, Y. P.; Salazar, F.; Sun, B. B.; Jiang, W.; Chang, C. H.; Jiang, J. H.; Wang, X.; Wu, A. M. et al. Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat. Commun. 2017, 8, 1811.

[4]

Zhao, Y. J.; Xiao, X.; Zou, M.; Ding, B. B.; Xiao, H.; Wang, M. F.; Jiang, F.; Cheng, Z. Y.; Ma, P.; Lin, J. Retracted: Nanozyme-initiated in situ cascade reactions for self-amplified biocatalytic immunotherapy. Adv. Mater. 2021, 33, 2006363.

[5]

Duan, X. P.; Chan, C.; Lin, W. B. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew. Chem., Int. Ed. 2019, 58, 670–680.

[6]

Tabas, I.; Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 2011, 13, 184–190.

[7]

Xiang, Q. Y. Q.; Yang, C.; Luo, Y. L.; Liu, F.; Zheng, J.; Liu, W. W.; Ran, H. T.; Sun, Y.; Ren, J. L.; Wang, Z. G. Near-infrared II nanoadjuvant-mediated chemodynamic, photodynamic, and photothermal therapy combines immunogenic cell death with PD-L1 blockade to enhance antitumor immunity. Small 2022, 18, 2107809.

[8]

Jiao, X. D.; Sun, L. H.; Zhang, W.; Ren, J. J.; Zhang, L.; Cao, Y.; Xu, Z. G.; Kang, Y. J.; Xue, P. Engineering oxygen-deficient ZrO2-X nanoplatform as therapy-activated "immunogenic cell death (ICD)" inducer to synergize photothermal-augmented sonodynamic tumor elimination in NIR-II biological window. Biomaterials 2021, 272, 120787.

[9]

Fu, S. Y.; Yang, R. H.; Ren, J. J.; Liu, J. H.; Zhang, L.; Xu, Z. G.; Kang, Y. J.; Xue, P. Catalytically active CoFe2O4 nanoflowers for augmented sonodynamic and chemodynamic combination therapy with elicitation of robust immune response. ACS Nano 2021, 15, 11953–11969.

[10]

Liang, J. L.; Luo, G. F.; Chen, W. H.; Zhang, X. Z. Recent advances in engineered materials for immunotherapy-involved combination cancer therapy. Adv. Mater. 2021, 33, 2007630.

[11]

Chen, C.; Ni, X.; Jia, S. R.; Liang, Y.; Wu, X. L.; Kong, D. L.; Ding, D. Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an AIE luminogen with a twisted molecular structure. Adv. Mater. 2019, 31, 1904914.

[12]

Zhang, S. W.; Wang, J.; Kong, Z. Q.; Sun, X. X.; He, Z. G.; Sun, B. J.; Luo, C.; Sun, J. Emerging photodynamic nanotherapeutics for inducing immunogenic cell death and potentiating cancer immunotherapy. Biomaterials 2022, 282, 121433.

[13]

Chu, Z. Y.; Chen, H.; Wang, P. S.; Wang, W. N.; Yang, J.; Sun, J. N.; Chen, B. J.; Tian, T.; Zha, Z.; Wang, H. et al. Phototherapy using a fluoroquinolone antibiotic drug to suppress tumor migration and proliferation and to enhance apoptosis. ACS Nano 2022, 16, 4917–4929.

[14]

Li, Z.; Chu, Z. Y.; Yang, J.; Qian, H. S.; Xu, J. M.; Chen, B. J.; Tian, T.; Chen, H.; Xu, Y. S.; Wang, F. Immunogenic cell death augmented by manganese zinc sulfide nanoparticles for metastatic melanoma immunotherapy. ACS Nano 2022, 16, 15471–15483.

[15]

Um, W.; Kumar, E. P.; Lee, J.; Kim, C. H.; You, D. G.; Park, J. H. Recent advances in nanomaterial-based augmented sonodynamic therapy of cancer. Chem. Commun. 2021, 57, 2854–2866.

[16]

Zhu, W. J.; Chen, Q.; Jin, Q. T.; Chao, Y.; Sun, L. L.; Han, X.; Xu, J.; Tian, L. L.; Zhang, J. L.; Liu, T. et al. Sonodynamic therapy with immune modulatable two-dimensional coordination nanosheets for enhanced anti-tumor immunotherapy. Nano Res. 2021, 14, 212–221.

[17]

Zhao, Y. M.; Liu, J. H.; He, M. T.; Dong, Q.; Zhang, L.; Xu, Z. G.; Kang, Y. J.; Xue, P. Platinum-Titania schottky junction as nanosonosensitizer, glucose scavenger, and tumor microenvironment-modulator for promoted cancer treatment. ACS Nano 2022, 8, 12118–12133.

[18]

Yang, Y. N.; Gu, Z. Y.; Tang, J.; Zhang, M.; Yang, Y.; Song, H.; Yu, C. Z. MnO2 nanoflowers induce immunogenic cell death under nutrient deprivation: Enabling an orchestrated cancer starvation-immunotherapy. Adv. Sci. 2021, 8, 2002667.

[19]

Li, Z. W.; Rong, L. Homotypic membrane-camouflaged biomimetic nanoplatform with gold nanocrystals for synergistic photothermal/starvation/immunotherapy. ACS Appl. Mater. Interfaces 2021, 13, 23469–23480.

[20]

Duan, F.; Jin, W.; Zhang, T.; Zhang, F.; Gong, L. K.; Liu, X. Y.; Deng, X. L.; Gao, W. P. Self-activated cascade biocatalysis of glucose oxidase-polycation-iron nanoconjugates augments cancer immunotherapy. ACS Appl. Mater. Interfaces 2022, 14, 32823–32835.

[21]

Chang, M. Y.; Wang, M.; Wang, M. F.; Shu, M. M.; Ding, B. B.; Li, C. X.; Pang, M. L.; Cui, S. Z.; Hou, Z. Y.; Lin, J. A Multifunctional cascade bioreactor based on hollow-structured Cu2MoS4 for synergetic cancer chemo-dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy. Adv. Mater. 2019, 31, 1905271.

[22]

Deng, H. Z.; Zhou, Z. J.; Yang, W. J.; Lin, L. S.; Wang, S.; Niu, G.; Song, J. B.; Chen, X. Y. Endoplasmic reticulum targeting to amplify immunogenic cell death for cancer immunotherapy. Nano Lett. 2020, 20, 1928–1933.

[23]

Dai, Z.; Tang, J.; Gu, Z. Y.; Wang, Y.; Yang, Y.; Yang, Y. N.; Yu, C. Z. Eliciting immunogenic cell death via a unitized nanoinducer. Nano Lett. 2020, 20, 6246–6254.

[24]

Zhou, Z. H.; Huang, J. S.; Zhang, Z. Y.; Zhang, L.; Cao, Y.; Xu, Z. G.; Kang, Y. J.; Xue, P. Bimetallic PdPt-based nanocatalysts for photothermal-augmented tumor starvation and sonodynamic therapy in NIR-II biowindow assisted by an oxygen self-supply strategy. Chem. Eng. J. 2022, 435, 135085.

[25]

Li, J. J.; Anraku, Y.; Kataoka, K. Self-boosting catalytic nanoreactors integrated with triggerable crosslinking membrane networks for initiation of immunogenic cell death by pyroptosis. Angew. Chem., Int. Ed. 2020, 59, 13526–13530.

[26]

Cao, Y.; Wu, T. T.; Dai, W. H.; Dong, H. F.; Zhang, X. J. TiO2 nanosheets with the Au nanocrystal-decorated edge for mitochondria-targeting enhanced sonodynamic therapy. Chem. Mater. 2019, 31, 9105–9114.

[27]

Liang, S.; Deng, X. R.; Xu, G. Y.; Xiao, X.; Wang, M. F.; Guo, X. S.; Ma, P. A.; Cheng, Z. Y.; Zhang, D.; Lin, J. A Novel Pt-TiO2 heterostructure with oxygen-deficient layer as bilaterally enhanced sonosensitizer for synergistic chemo-sonodynamic cancer therapy. Adv. Funct. Mater. 2020, 13, 1908598.

[28]

Chen, J. X.; Ma, Q.; Li, M. H.; Chao, D. Y.; Huang, L.; Wu, W. W.; Fang, Y. X.; Dong, S. J. Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat. Commun. 2021, 1, 3375.

[29]

Ishida, T.; Kinoshita, N.; Okatsu, H.; Akita, T.; Takei, T.; Haruta, M. Influence of the support and the size of gold clusters on catalytic activity for glucose oxidation. Angew. Chem., Int. Ed. 2008, 47, 9265–9268.

[30]

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

[31]

Wang, B. Q.; Cheng, C.; Jin, M. M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D. S.; Li, Y. D. A site distance effect induced by reactant molecule matchup in single-atom catalysts for Fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202207268.

[32]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 135, e202212653.

[33]

Ding, J. Y.; Yang, H.; Zhang, S. S.; Liu, Q.; Cao, H. Q.; Luo, J.; Liu, X. J. Advances in the electrocatalytic hydrogen evolution reaction by metal nanoclusters-based materials. Small 2022, 18, 2204524.

[34]

Yang, Y. Q.; Wang, X. W.; Qian, H. S.; Cheng, L. Titanium-based sonosensitizers for sonodynamic cancer therapy. Appl. Mater. Today 2021, 25, 101215.

[35]

Jia, A. P.; Zhang, Y. S.; Song, T. Y.; Zhang, Z. H.; Tang, C.; Hu, Y. M.; Zheng, W. B.; Luo, M. F.; Lu, J. Q.; Huang, W. X. Crystal-plane effects of anatase TiO2 on the selective hydrogenation of crotonaldehyde over Ir/TiO2 catalysts. J. Catal. 2021, 395, 10–22.

[36]

Shoaib, A.; Ji, M. W.; Qian, H. M.; Liu, J. J.; Xu, M.; Zhang, J. T. Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Res. 2016, 9, 1763–1774.

[37]

Abbas, M. A.; Bang, J. H. Surface state-assisted delayed photocurrent response of Au nanocluster/ TiO2 photoelectrodes. ACS Appl. Mater. Interfaces 2022, 14, 25409–25416.

[38]

Beckett, M. A.; Hua, I. Impact of ultrasonic frequency on aqueous sonoluminescence and sonochemistry. J. Phys. Chem. A 2001, 105, 3796–3802.

[39]

Zhang, Q. Z.; Jin, X.; Xu, Z. H.; Zhang, J. M.; Rendón, U. F.; Razzari, L.; Chaker, M.; Ma, D. L. Plasmonic Au-loaded hierarchical hollow porous TiO2 spheres: Synergistic catalysts for nitroaromatic reduction. J. Phys. Chem. Lett. 2018, 9, 5317–5326.

[40]

Wang, Q.; Shaik, F.; Lu, X. X.; Zhang, W. H.; Wu, Y. F.; Qian, H. S.; Zhang, W. Q. Amorphous NiB@IrOx nanozymes trigger efficient apoptosis-ferroptosis hybrid therapy. Acta Biomater. 2023, 155, 575–587.

[41]

Iurlaro, R. Muñoz-Pinedo, C. Cell death induced by endoplasmic reticulum stress. FEBS J. 2016, 14, 2640–2652.

[42]

Rufo, N.; Garg, A. D.; Agostinis, P. The unfolded protein response in immunogenic cell death and cancer immunotherapy. Trends Cancer 2017, 3, 643–658.

[43]

Biswas, S. K.; Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol. 2010, 11, 889–896.

[44]

Zheng, Y. H.; Han, Y. B.; Sun, Q.; Li, Z. Harnessing anti-tumor and tumor-tropism functions of macrophages via nanotechnology for tumor immunotherapy. Exploration 2022, 2, 20210166.

[45]

Liu, L. Q.; Wang, Y.; Guo, X.; Zhao, J. Y.; Zhou, S. B. A biomimetic polymer magnetic nanocarrier polarizing tumor-associated macrophages for potentiating immunotherapy. Small 2020, 16, 2003543.

[46]

Zhou, M. L.; Xie, D. D.; Zhou, Z.; Li, L.; Huang, Y. Spatially targeting of tumor-associated macrophages and cancer cells for suppression of spontaneously metastatic tumor. Nano Res. 2022, 15, 3446–3457.

[47]

Meng, G.; Jin, M. M.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Peng, X. Y.; Luo, J.; Liu, X. J. MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia. Nano Res. 2022, 15, 8890–8896.

[48]

Hou, J. R.; Peng, X. Y.; Sun, J. Q.; Zhang, S. S.; Liu, Q.; Wang, X. Z.; Luo, J.; Liu, X. J. Accelerating hydrazine-assisted hydrogen production kinetics with Mn dopant modulated CoS2 nanowire arrays. Inorg. Chem. Front. 2022, 9, 3047–3058.

[49]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[50]
Liu, W. X.; Feng, J. X.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Luo, Y.; Luo, J.; Liu, X. J. Active-site and interface engineering of cathode materials for aqueous Zn-gas batteries. Nano Res. , 2023 , 16, 2325-2346.
[51]

Yang, Y. D.; Yang, T. X.; Chen, F. F.; Zhang, C.; Yin, B. L.; Yin, X.; Han, L. B.; Xie, Q. J.; Zhang, X. B.; Song, G. S. Degradable magnetic nanoplatform with hydroxide Ions triggered photoacoustic, MR Imaging, and photothermal conversion for precise cancer theranostic. Nano Lett. 2022, 22, 3228–3235.

[52]

Lu, C.; Zhang, C.; Wang, P.; Zhao, Y.; Yang, Y.; Wang, Y. J.; Yuan, H. F.; Qu, S. L.; Zhang, X. B.; Song, G. S. et al. Light-free generation of singlet oxygen through manganese-thiophene nanosystems for pH-responsive chemiluminescence imaging and tumor therapy. Chem 2020, 6, 2314–2334.

[53]

Teng, L. L.; Han, X. Y.; Liu, Y. C.; Lu, C.; Yin, B. L.; Huan, S. Y.; Yin, X.; Zhang, X. B.; Song, G. S. Smart nanozyme platform with activity-correlated ratiometric molecular imaging for predicting therapeutic effects. Angew. Chem., Int. Ed. 2021, 60, 26142–26150.

[54]

Shi, L. N.; Wang, Y. J.; Zhang, C.; Zhao, Y.; Lu, C.; Yin, B. L.; Yang, Y.; Gong, X. Y.; Teng, L. L.; Liu, Y. L. et al. An acidity-unlocked magnetic nanoplatform enables self-boosting ROS generation through upregulation of lactate for imaging-guided highly specific chemodynamic therapy. Angew. Chem., Int. Ed. 2021, 60, 9562–9572.

[55]

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

[56]

Belotti, D.; Paganoni, P.; Manenti, L.; Garofalo, A.; Marchini, S.; Taraboletti, G.; Giavazzi, R. Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: Implications for ascites formation. Cancer Res. 2003, 63, 5224–5229.

[57]

Han, L. L.; Ren, Z. H.; Ou, P. F.; Cheng, H.; Rui, N.; Lin, L. L.; Liu, X. J.; Zhuo, L. C.; Song, J.; Sun, J. Q. et al. Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew. Chem., Int. Ed. 2021, 60, 345–350.

[58]

Wei, T. R.; Liu, W. X.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. A dual-functional Bi-doped Co3O4 nanosheet array towards high efficiency 5-hydroxymethylfurfural oxidation and hydrogen production. Chem. Commun. 2023, 59, 442–445.

[59]

Gao, S. S.; Wei, T. R.; Sun, J. Q.; Liu, Q.; Ma, D.; Liu, W. X.; Zhang, S. S.; Luo, J.; Liu, X. J. Atomically dispersed metal-based catalysts for Zn-CO2 batteries. Small Struct. 2022, 3, 2200086.

[60]

Zhou, J. J.; Ma, X. B.; Li, H.; Chen, D. R.; Mao, L.; Yang, L. L.; Zhang, T.; Qiu, W.; Xu, Z. G.; Sun, Z. J. Inspired heat shock protein alleviating prodrug enforces immunogenic photodynamic therapy by eliciting pyroptosis. Nano Res. 2022, 15, 3398–3408.

[61]

Meng, G.; Cao, H. J.; Wei, T. R.; Liu, Q.; Fu, J. T.; Zhang, S. S.; Luo, J.; Liu, X. J. Highly dispersed Ru clusters toward an efficient and durable hydrogen oxidation reaction. Chem. Commun. 2022, 58, 11839–11842.

[62]

Balakrishnan, P. B.; Ledezma, D. K.; Cano-Mejia, J.; Andricovich, J.; Palmer, E.; Patel, V. A.; Latham, P. S.; Yvon, E. S.; Villagra, A.; Fernandes, R. et al. CD137 agonist potentiates the abscopal efficacy of nanoparticle-based photothermal therapy for melanoma. Nano Res. 2022, 15, 2300–2314.

[63]

Hou, X. H.; Ding, J. Y.; Liu, W. X.; Zhang, S. S.; Luo, J.; Liu, X. J. Asymmetric coordination environment engineering of atomic catalysts for CO2 reduction. Nanomaterials (Basel) 2023, 13, 309.

[64]

Shen, H.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Luo, J. O.; Liu, X. J. Heterogeneous Ni-MoN nanosheet-assembled microspheres for urea-assisted hydrogen production. J. Colloid Interface Sci. 2023, 634, 730–736.

[65]

Huang, L. P.; Li, Y. N.; Du, Y. N.; Zhang, Y. Y.; Wang, X. X.; Ding, Y.; Yang, X. L.; Meng, F. L.; Tu, J. S.; Luo, L. et al. Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy. Nat. Commun. 2019, 10, 4871.

Nano Research
Pages 9730-9742
Cite this article:
Lu X, Qiao K, Shaik F, et al. Evoking robust immunogenic cell death by synergistic sonodynamic therapy and glucose depletion using Au clusters/single atoms modified TiO2 nanosheets. Nano Research, 2023, 16(7): 9730-9742. https://doi.org/10.1007/s12274-023-5562-9
Topics:

1033

Views

17

Crossref

20

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 26 December 2022
Revised: 07 February 2023
Accepted: 08 February 2023
Published: 10 March 2023
© Tsinghua University Press 2023
Return