AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Harnessing wrinkling morphologies of graphene on soft substrates for mechanically programmable interfacial thermal conductance

Qingchang LiuBaoxing Xu( )
Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
Show Author Information

Graphical Abstract

We present that a rich variety of wrinkling and folding morphologies of graphene on a soft substrate can be obtained and well controlled by managing the pre-strain applied to the soft substrate, and as a result, the interfacial thermal conductance of graphene on the substrate can be largely regulated by harnessing wrinkling and folding morphologies of graphene.

Abstract

Strain engineering has been leveraged to tune the thermal properties of materials by introducing stress and manipulating local atomic vibrations, which poses a detrimental threat to the mechanical integrity of materials and structures and limits the capability to regulate thermal transport. Here, we report that the interfacial thermal conductance of graphene on a soft substrate can be regulated by harnessing wrinkling and folding morphologies of graphene, which could be well controlled by managing the pre-strain applied to the substrate. These obtained graphene structures are free of significant in-plane mechanical strain and only have infinitesimal distortion to the intrinsic thermal properties of graphene. The subsequent thermal transport studies with pump-probe non-equilibrium molecular dynamics (MD) simulation show that the thermal conductance between graphene structures and the substrate is uniquely determined by the morphological features of graphene. The atomic density of interfacial interactions, energy dissipation, and temperature distribution are elucidated to understand the thermal transport across each graphene structure and substrate. We further demonstrate that the normalized thermal conductance decreases monotonically with the increase of the equivalent mechanical strain, showing the capability of mechanically programmable interfacial thermal conductance in a broad range of strains. Application demonstrations in search of on-demand thermal conductance are conducted by controlling the geometric morphologies of graphene. This study lays a foundation for regulating interfacial thermal conductance through mechanical loading-induced geometric deformation of materials on a soft substrate, potentially useful in the design of flexible and stretchable structures and devices with tunable thermal management performance.

Electronic Supplementary Material

Download File(s)
12274_2023_5565_MOESM1_ESM.pdf (2.4 MB)

References

[1]

Moore, A. L.; Shi, L. Emerging challenges and materials for thermal management of electronics. Mater. Today 2014, 17, 163–174.

[2]

Khan, J.; Momin, S. A.; Mariatti, M. A review on advanced carbon-based thermal interface materials for electronic devices. Carbon 2020, 168, 65–112.

[3]

Liu, N.; Chortos, A.; Lei, T.; Jin, L. H.; Kim, T. R.; Bae, W. G.; Zhu, C. X.; Wang, S. H.; Pfattner, R.; Chen, X. Y. et al. Ultratransparent and stretchable graphene electrodes. Sci. Adv. 2017, 3, e1700159.

[4]

Panse, K. S.; Zhou, S.; Zhang, Y. J. 3D mapping of the structural transitions in wrinkled 2D membranes: Implications for reconfigurable electronics, memristors, and bioelectronic interfaces. ACS Appl. Nano Mater. 2019, 2, 5779–5786.

[5]

Chen, J.; Walther, J. H.; Koumoutsakos, P. Strain engineering of Kapitza resistance in few-layer graphene. Nano Lett. 2014, 14, 819–825.

[6]

Hu, M.; Giapis, K. P.; Goicochea, J. V.; Zhang, X. L.; Poulikakos, D. Significant reduction of thermal conductivity in Si/Ge core–shell nanowires. Nano Lett. 2011, 11, 618–623.

[7]

Li, X. B.; Yang, R. G. Effect of lattice mismatch on phonon transmission and interface thermal conductance across dissimilar material interfaces. Phys. Rev. B 2012, 86, 054305.

[8]

Gao, Y.; Liu, Q. C.; Xu, B. X. Lattice mismatch dominant yet mechanically tunable thermal conductivity in bilayer heterostructures. ACS Nano 2016, 10, 5431–5439.

[9]

Qian, X.; Zhou, J. W.; Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 2021, 20, 1188–1202.

[10]

Cheng, Y.; Wu, X.; Zhang, Z. J.; Sun, Y.; Zhao, Y. S.; Zhang, Y. Y.; Zhang, G. Thermo-mechanical correlation in two-dimensional materials. Nanoscale 2021, 13, 1425–1442.

[11]

Bushick, K.; Chae, S.; Deng, Z.; Heron, J. T.; Kioupakis, E. Boron arsenide heterostructures: Lattice-matched heterointerfaces and strain effects on band alignments and mobility. npj Comput. Mater. 2020, 6, 3.

[12]

Wu, Y. X.; Chen, Z. W.; Nan, P. F.; Xiong, F.; Lin, S. Q.; Zhang, X. Y.; Chen, Y.; Chen, L. D.; Ge, B. H.; Pei, Y. Z. et al. Lattice strain advances thermoelectrics. Joule 2019, 3, 1276–1288.

[13]

Gao, Y.; Xu, B. X. van der Waals graphene kirigami heterostructure for strain-controlled thermal transparency. ACS Nano 2018, 12, 11254–11262.

[14]

Chen, X. K.; Zeng, Y. J.; Chen, K. Q. Thermal transport in two-dimensional heterostructures. Front. Mater. 2020, 7, 578791.

[15]

Seijas-Bellido, J. A.; Rurali, R.; Íñiguez, J.; Colombo, L.; Melis, C. Strain engineering of ZnO thermal conductivity. Phys. Rev. Mater. 2019, 3, 065401.

[16]

Foley, B. M.; Wallace, M.; Gaskins, J. T.; Paisley, E. A.; Johnson-Wilke, R. L.; Kim, J. W.; Ryan, P. J.; Trolier-McKinstry, S.; Hopkins, P. E.; Ihlefeld, J. F. Voltage-controlled bistable thermal conductivity in suspended ferroelectric thin-film membranes. ACS Appl. Mater. Interfaces 2018, 10, 25493–25501.

[17]

Giri, A.; Evans, A. M.; Rahman, M. A.; McGaughey, A. J. H.; Hopkins, P. E. Highly negative poisson’s ratio in thermally conductive covalent organic frameworks. ACS Nano 2022, 16, 2843–2851.

[18]

Tomko, J. A.; Pena-Francesch, A.; Jung, H.; Tyagi, M.; Allen, B. D.; Demirel, M. C.; Hopkins, P. E. Tunable thermal transport and reversible thermal conductivity switching in topologically networked bio-inspired materials. Nat. Nanotechnol. 2018, 13, 959–964.

[19]

Gao, Y.; Xu, B. X. Controllable interface junction, in-plane heterostructures capable of mechanically mediating on-demand asymmetry of thermal transports. ACS Appl. Mater. Interfaces 2017, 9, 34506–34517.

[20]

Shrestha, R.; Luan, Y. X.; Luo, X.; Shin, S.; Zhang, T.; Smith, P.; Gong, W.; Bockstaller, M.; Luo, T. F.; Chen, R. K. et al. Dual-mode solid-state thermal rectification. Nat. Commun. 2020, 11, 4346.

[21]

Wei, A. R.; Lahkar, S.; Li, X. X.; Li, S. P.; Ye, H. Multilayer graphene-based thermal rectifier with interlayer gradient functionalization. ACS Appl. Mater. Interfaces 2019, 11, 45180–45188.

[22]

Hu, R.; Xi, W.; Liu, Y. D.; Tang, K. C.; Song, J. L.; Luo, X. B.; Wu, J. Q.; Qiu, C. W. Thermal camouflaging metamaterials. Mater. Today 2021, 45, 120–141.

[23]

Yu, D. H.; Liao, Y.; Song, Y. C.; Wang, S. L.; Wan, H. Y.; Zeng, Y. H.; Yin, T.; Yang, W. H.; He, Z. Z. A super-stretchable liquid metal foamed elastomer for tunable control of electromagnetic waves and thermal transport. Adv. Sci. 2020, 7, 2000177.

[24]

Sood, A.; Xiong, F.; Chen, S. D.; Wang, H. T.; Selli, D.; Zhang, J. S.; McClellan, C. J.; Sun, J.; Donadio, D.; Cui, Y. et al. An electrochemical thermal transistor. Nat. Commun. 2018, 9, 4510.

[25]

Song, Y. Q.; Gao, Y. Q.; Liu, X. T.; Ma, J.; Chen, B. H.; Xie, Q.; Gao, X.; Zheng, L. M.; Zhang, Y.; Ding, Q. J. et al. Transfer-enabled fabrication of graphene wrinkle arrays for epitaxial growth of aln films. Adv. Mater. 2022, 34, 2105851.

[26]

Zheng, F. Y.; Thi, Q. H.; Wong, L. W.; Deng, Q. M.; Ly, T. H.; Zhao, J. Critical stable length in wrinkles of two-dimensional materials. ACS Nano 2020, 14, 2137–2144.

[27]

Mao, J. H.; Milovanović, S. P.; Andelković, M.; Lai, X. Y.; Cao, Y.; Watanabe, K.; Taniguchi, T.; Covaci, L.; Peeters, F. M.; Geim, A. K. et al. Evidence of flat bands and correlated states in buckled graphene superlattices. Nature 2020, 584, 215–220.

[28]

Taylor, J. M.; Luan, H. W.; Lewis, J. A.; Rogers, J. A.; Nuzzo, R. G.; Braun, P. V. Biomimetic and biologically compliant soft architectures via 3D and 4D assembly methods: A perspective. Adv. Mater. 2022, 34, 2108391.

[29]

Deng, S. K.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212.

[30]

Wang, Y.; Yang, R.; Shi, Z. W.; Zhang, L. C.; Shi, D. X.; Wang, E. G.; Zhang, G. Y. Super-elastic graphene ripples for flexible strain sensors. ACS Nano 2011, 5, 3645–3650.

[31]

Ghosh, D.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E. P.; Nika, D. L.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 2008, 92, 151911.

[32]

Fu, Y. F.; Hansson, J.; Liu, Y.; Chen, S. J.; Zehri, A.; Samani, M. K.; Wang, N.; Ni, Y. X.; Zhang, Y.; Zhang, Z. B. et al. Graphene related materials for thermal management. 2D Mater. 2019, 7, 012001.

[33]

Zhang, J. C.; Hong, Y.; Tong, Z.; Xiao, Z. H.; Bao, H.; Yue, Y. N. Molecular dynamics study of interfacial thermal transport between silicene and substrates. Phys. Chem. Chem. Phys. 2015, 17, 23704–23710.

[34]

Berman, D.; Deshmukh, S. A.; Sankaranarayanan, S. K. R. S.; Erdemir, A.; Sumant, A. V. Macroscale superlubricity enabled by graphene nanoscroll formation. Science 2015, 348, 1118–1122.

[35]

Androulidakis, C.; Koukaras, E. N.; Paterakis, G.; Trakakis, G.; Galiotis, C. Tunable macroscale structural superlubricity in two-layer graphene via strain engineering. Nat. Commun. 2020, 11, 1595.

[36]

Liu, Q. C.; Gao, Y.; Xu, B. X. Transferable, deep-learning-driven fast prediction and design of thermal transport in mechanically stretched graphene flakes. ACS Nano 2021, 15, 16597–16606.

[37]

Liu, Q. C.; Huang, J. X.; Xu, B. X. Evaporation-driven crumpling and assembling of two-dimensional (2D) materials: A rotational spring-mechanical slider model. J. Mech. Phys. Solids 2019, 133, 103722.

[38]

Huang, B.; Koh, Y. K. Improved topological conformity enhances heat conduction across metal contacts on transferred graphene. Carbon 2016, 105, 268–274.

[39]

Chen, J. H.; Ishigami, M.; Jang, C.; Hines, D. R.; Fuhrer, M. S.; Williams, E. D. Printed graphene circuits. Adv. Mater. 2007, 19, 3623–3627.

[40]

Yang, N.; Ni, X. X.; Jiang, J. W.; Li, B. W. How does folding modulate thermal conductivity of graphene. Appl. Phys. Lett. 2012, 100, 093107.

[41]

Koh, Y. K.; Bae, M. H.; Cahill, D. G.; Pop, E. Heat conduction across monolayer and few-layer graphenes. Nano Lett. 2010, 10, 4363–4368.

[42]

Chang, S. W.; Nair, A. K.; Buehler, M. J. Geometry and temperature effects of the interfacial thermal conductance in copper- and nickel-graphene nanocomposites. J. Phys. Condens. Matter. 2012, 24, 245301.

[43]

Shen, M.; Schelling, P. K.; Keblinski, P. Heat transfer mechanism across few-layer graphene by molecular dynamics. Phys. Rev. B 2013, 88, 045444.

[44]

Zhang, Z. W.; Chen, J.; Li, B. W. Negative Gaussian curvature induces significant suppression of thermal conduction in carbon crystals. Nanoscale 2017, 9, 14208–14214.

[45]

Liu, Q. C.; Xu, B. X. Anomalous thermal transport of mechanically bent graphene: Implications for thermal management in flexible electronics. ACS Appl. Nano Mater. 2022, 5, 13180–13186.

[46]

Chen, J.; He, J.; Pan, D. K.; Wang, X. T.; Yang, N.; Zhu, J. J.; Yang, S. A.; Zhang, G. Emerging theory and phenomena in thermal conduction: A selective review. Sci. China Phys., Mech. Astron. 2022, 65, 117002.

[47]

Xie, G. F.; Ding, D.; Zhang, G. Phonon coherence and its effect on thermal conductivity of nanostructures. Adv. Phys. X 2018, 3, 1480417.

[48]

Wu, X.; Han, Q. Phonon thermal transport across multilayer graphene/hexagonal boron nitride van der Waals heterostructures. ACS Appl. Mater. Interfaces 2021, 13, 32564–32578.

[49]

Lu, Q.; Arroyo, M.; Huang, R. Elastic bending modulus of monolayer graphene. J. Phys. D Appl. Phys. 2009, 42, 102002.

[50]

Koenig, S. P.; Boddeti, N. G.; Dunn, M. L.; Bunch, J. S. Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 2011, 6, 543–546.

[51]

Li, Q. S.; Liu, F.; Hu, S.; Song, H. F.; Yang, S. S.; Jiang, H. L.; Wang, T.; Koh, Y. K.; Zhao, C. Y.; Kang, F. Y. et al. Inelastic phonon transport across atomically sharp metal/semiconductor interfaces. Nat. Commun. 2022, 13, 4901.

[52]

Salaway, R. N.; Zhigilei, L. V. Thermal conductance of carbon nanotube contacts: Molecular dynamics simulations and general description of the contact conductance. Phys. Rev. B 2016, 94, 014308.

[53]

Gao, Y.; Yang, W. Z.; Xu, B. X. Unusual thermal conductivity behavior of serpentine graphene nanoribbons under tensile strain. Carbon 2016, 96, 513–521.

[54]

Stuart, S. J.; Tutein, A. B.; Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486.

[55]

Liu, Q. C.; Gao, Y.; Xu, B. X. Liquid evaporation-driven folding of graphene sheets. Appl. Phys. Lett. 2016, 108, 141906.

[56]

Tang, Y. Q.; Zhang, Z.; Li, L.; Guo, J.; Yang, P. Thermal transport enhancement resolution for graphene/Si and graphene/SiC interfaces. Int. J. Therm. Sci. 2022, 171, 107231.

[57]

Tersoff, J. Empirical interatomic potential for silicon with improved elastic properties. Phys. Rev. B 1988, 38, 9902–9905.

[58]

Inui, N.; Iwasaki, S. Interaction energy between graphene and a silicon substrate using pairwise summation of the lennard-jones potential. e-J. Surf. Sci. Nanotechnol. 2017, 15, 40–49.

[59]

Bunch, J. S.; Dunn, M. L. Adhesion mechanics of graphene membranes. Solid State Commun. 2012, 152, 1359–1364.

[60]

Yang, K. J.; Chen, Y. L.; Pan, F.; Wang, S. T.; Ma, Y.; Liu, Q. J. Buckling behavior of substrate supported graphene sheets. Materials 2016, 9, 32.

[61]

Jiang, T.; Huang, R.; Zhu, Y. Interfacial sliding and buckling of monolayer graphene on a stretchable substrate. Adv. Funct. Mater. 2014, 24, 396–402.

[62]

Zhu, W. J.; Low, T.; Perebeinos, V.; Bol, A. A.; Zhu, Y.; Yan, H. G.; Tersoff, J.; Avouris, P. Structure and electronic transport in graphene wrinkles. Nano Lett. 2012, 12, 3431–3436.

[63]

Hong, Y.; Li, L.; Zeng, X. C.; Zhang, J. C. Tuning thermal contact conductance at graphene-copper interface via surface nanoengineering. Nanoscale 2015, 7, 6286–6294.

[64]

Zhang, J. C.; Wang, Y. C.; Wang, X. W. Rough contact is not always bad for interfacial energy coupling. Nanoscale 2013, 5, 11598–11603.

[65]

Sun, B.; Gu, X. K.; Zeng, Q. S.; Huang, X.; Yan, Y. X.; Liu, Z.; Yang, R. G.; Koh, Y. K. Temperature dependence of anisotropic thermal-conductivity tensor of bulk black phosphorus. Adv. Mater. 2017, 29, 1603297.

[66]

Yue, Y. N.; Zhang, J. C.; Tang, X. D.; Xu, S.; Wang, X. W. Thermal transport across atomic-layer material interfaces. Nanotechnol. Rev. 2015, 4, 533–555.

[67]

Xu, Z. P.; Buehler, M. J. Heat dissipation at a graphene-substrate interface. J. Phys. Condens. Matter 2012, 24, 475305.

[68]

Tang, X. D.; Xu, S.; Zhang, J. C.; Wang, X. W. Five orders of magnitude reduction in energy coupling across corrugated graphene/substrate interfaces. ACS Appl. Mater. Interfaces 2014, 6, 2809–2818.

[69]
Plimpton, S. ; Crozier, P. ; Thompson, A. LAMMPS-large-scale atomic/molecular massively parallel simulator. Sandia Natl. Lab. 2007, 18, 43.
Nano Research
Pages 9608-9617
Cite this article:
Liu Q, Xu B. Harnessing wrinkling morphologies of graphene on soft substrates for mechanically programmable interfacial thermal conductance. Nano Research, 2023, 16(7): 9608-9617. https://doi.org/10.1007/s12274-023-5565-6
Topics:

900

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 07 December 2022
Revised: 24 January 2023
Accepted: 10 February 2023
Published: 04 April 2023
© Tsinghua University Press 2023
Return