AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

All optical artificial synapses based on long-afterglow material for optical neural network

Wenjie Lu1,§Qizhen Chen1,§Huaan Zeng1Hui Wang1Lujian Liu1Tailiang Guo1Huipeng Chen1,3 ( )Rui Wang2( )
Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
Wenjie Lu and Qizhen Chen contributed equally this work.
Show Author Information

Graphical Abstract

An all-optical synaptic device simply based on a long-afterglow material is reported. Unique image displays and memory functions can be achieved by combining all-optical synaptic arrays with synaptic memory behavior.

Abstract

Artificial neural network with broad application prospect has attracted particular attention due to the promise of solving the memory wall bottleneck. The neural devices that mix light and electricity provide more degrees of freedom for the design of artificial neural network, but they still do not get rid of the shackles that the response signal needs circuit to transmission. The exploration of all-optical neural devices (optical signal input and output) is expected to solve this problem. Here, an all-optical synaptic device simply based on a long-afterglow material is reported. The optical properties of the all-optical synaptic device are similar to the responses in biological synapses. Unique image displays and memory functions can be achieved by combining all-optical synaptic arrays with synaptic memory behavior. Furthermore, the optical summation of all-optical synaptic array pixels can be completed by combining the focusing characteristics of convex lens, which realizes the photon transmission after preprocessing multiple input signals. Particularly, the simple single-layer structure of all-optical synapses with polydimethylsiloxane (PDMS) as the carrier has high plasticity and is expected to achieve large-scale preparation. This work enriches the diversity of artificial synapses and shows the huge development potential of photoelectric artificial neural networks.

Electronic Supplementary Material

Download File(s)
12274_2023_5566_MOESM1_ESM.pdf (778.1 KB)

References

[1]

Agiwal, M.; Roy, A.; Saxena, N. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun. Surv. Tutorials 2016, 18, 1617–1655.

[2]

Wu, X. D.; Zhu, X. Q.; Wu, G. Q.; Ding, W. Data mining with big data. IEEE Trans. Knowl. Data Eng. 2014, 26, 97–107.

[3]

Huh, W.; Lee, D.; Lee, C. H. Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv. Mater. 2020, 32, 2002092.

[4]

LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444.

[5]

Yang, J. T.; Ge, C.; Du, J. Y.; Huang, H. Y.; He, M.; Wang, C.; Lu, H. B.; Yang, G. Z.; Jin, K. J. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. 2018, 30, 1801548.

[6]

Xu, W. T.; Min, S. Y.; Hwang, H.; Lee, T. W. Organic core–sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2016, 2, e1501326.

[7]

Wang, Y.; Lv, Z. Y.; Chen, J. R.; Wang, Z. P.; Zhou, Y.; Zhou, L.; Chen, X. L.; Han, S. T. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 2018, 30, 1802883.

[8]

He, Y. L.; Nie, S.; Liu, R.; Jiang, S. S.; Shi, Y.; Wan, Q. Spatiotemporal information processing emulated by multiterminal neuro-transistor networks. Adv. Mater. 2019, 31, 1900903.

[9]

Yan, X. B.; Zhang, L.; Chen, H. W.; Li, X. Y.; Wang, J. J.; Liu, Q.; Lu, C.; Chen, J. S.; Wu, H. Q.; Zhou, P. Graphene oxide quantum dots based memristors with progressive conduction tuning for artificial synaptic learning. Adv. Funct. Mater. 2018, 28, 1803728.

[10]

Hasegawa, T.; Terabe, K.; Tsuruoka, T.; Aono, M. Atomic switch: Atom/ion movement controlled devices for beyond von-Neumann computers. Adv. Mater. 2012, 24, 252–267.

[11]

Oh, S.; Huang, Z. S.; Shi, Y. H.; Kuzum, D. The impact of resistance drift of phase change memory (PCM) synaptic devices on artificial neural network performance. IEEE Electron Device Lett. 2019, 40, 1325–1328.

[12]

Kuzum, D.; Jeyasingh, R. G. D.; Lee, B.; Wong, H. S. P. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 2012, 12, 2179–2186.

[13]

Huang, W. Y.; Chang, Y. C.; Sie, Y. F.; Yu, C. R.; Wu, C. Y.; Hsu, Y. L. Bio-cellulose substrate for fabricating fully biodegradable resistive random access devices. ACS Appl. Polym. Mater. 2021, 3, 4478–4484.

[14]

Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301.

[15]

Yan, X. B.; Wang, K. Y.; Zhao, J. H.; Zhou, Z. Y.; Wang, H.; Wang, J. J.; Zhang, L.; Li, X. Y.; Xiao, Z. A.; Zhao, Q. L. et al. A new memristor with 2D Ti3C2Tx MXene flakes as an artificial bio-synapse. Small 2019, 15, 1900107.

[16]

Wang, F. D.; Yu, M. X.; Chen, X. D.; Li, J. Q.; Zhang, Z. C.; Li, Y.; Zhang, G. X.; Shi, K.; Shi, L.; Zhang, M. et al. Optically modulated dual-mode memristor arrays based on core–shell CsPbBr3@graphdiyne nanocrystals for fully memristive neuromorphic computing hardware. SmartMat 2023, 4, e1135.

[17]

Yang, F. X.; Sun, L. J.; Duan, Q. X.; Dong, H. L.; Jing, Z. K.; Yang, Y. C.; Li, R. J.; Zhang, X. T.; Hu, W. P.; Chua, L. Vertical-organic-nanocrystal-arrays for crossbar memristors with tuning switching dynamics toward neuromorphic computing. SmartMat 2021, 2, 99–108.

[18]

Kim, Y.; Lee, K.; Lee, J.; Jang, S.; Kim, H.; Lee, H.; Lee, S. W.; Wang, G.; Park, C. Bird-inspired self-navigating artificial synaptic compass. ACS Nano 2021, 15, 20116–20126.

[19]

Shi, J. L.; Jie, J. S.; Deng, W.; Luo, G.; Fang, X. C.; Xiao, Y. L.; Zhang, Y. J.; Zhang, X. J.; Zhang, X. H. A fully solution-printed photosynaptic transistor array with ultralow energy consumption for artificial-vision neural networks. Adv. Mater. 2022, 34, 2200380.

[20]

Gao, J.; Zheng, Y.; Yu, W.; Wang, Y. N.; Jin, T. Y.; Pan, X.; Loh, K. P.; Chen, W. Intrinsic polarization coupling in 2D α-In2Se3 toward artificial synapse with multimode operations. SmartMat 2021, 2, 88–98.

[21]

Chen, Q. Z.; Zhang, X. H.; Liu, Y. Q.; Yan, Y. J.; Yu, R. J.; Wang, X. M.; Lin, Z. N.; Zeng, H. A.; Liu, L. J.; Chen, H. P. et al. Neuromorphic display system for intelligent display. Nano Energy 2022, 94, 106931.

[22]

Liu, Y. Q.; Li, E. L.; Wang, X. M.; Chen, Q. Z.; Zhou, Y. L.; Hu, Y. Y.; Chen, G. X.; Chen, H. P.; Guo, T. L. Self-powered artificial auditory pathway for intelligent neuromorphic computing and sound detection. Nano Energy 2020, 78, 105403.

[23]

Gao, H. K.; Miao, Z. G.; Hu, W. P.; Dong, H. L. Research on key materials and devices of organic light-emitting transistors. Acta Chim. Sin. 2022, 80, 327–339.

[24]

Yan, X. B.; Zhao, J. H.; Liu, S.; Zhou, Z. Y.; Liu, Q.; Chen, J. S.; Liu, X. Y. Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv. Funct. Mater. 2018, 28, 1705320.

[25]

Zheng, Q.; Ren, P. Y.; Peng, Y. H.; Zhou, W. C.; Yin, Y. L.; Wu, H.; Gong, W. T.; Wang, W. K.; Tang, D. S.; Zou, B. S. In-plane anisotropic Raman response and electrical conductivity with robust electron–photon and electron–phonon interactions of air stable MoO2 nanosheets. J. Phys. Chem. Lett. 2019, 10, 2182–2190.

[26]

Siddiqui, S. A.; Dutta, S.; Tang, A.; Liu, L. Q.; Ross, C. A.; Baldo, M. A. Magnetic domain wall based synaptic and activation function generator for neuromorphic accelerators. Nano Lett. 2020, 20, 1033–1040.

[27]

Wang, X. M.; Li, E. L.; Liu, Y. Q.; Lan, S. Q.; Yang, H. H.; Yan, Y. J.; Shan, L. T.; Lin, Z. X.; Chen, H. P.; Guo, T. L. Stretchable vertical organic transistors and their applications in neurologically systems. Nano Energy 2021, 90, 106497.

[28]

Zhao, P. F.; Ji, R. X.; Lao, J.; Xu, W.; Jiang, C. L.; Luo, C. H.; Lin, H. C.; Peng, H.; Duan, C. G. Two-terminal organic optoelectronic synapse based on poly(3-hexylthiophene) for neuromorphic computing. Org. Electron. 2022, 100, 106390.

[29]

Yu, R. J.; Li, E. L.; Wu, X. M.; Yan, Y. J.; He, W. X.; He, L. H.; Chen, J. W.; Chen, H. P.; Guo, T. L. Electret-based organic synaptic transistor for neuromorphic computing. ACS Appl. Mater. Interfaces 2020, 12, 15446–15455.

[30]

Gao, C. S.; Yang, H. H.; Li, E. L.; Yan, Y. J.; He, L. H.; Chen, H. P.; Lin, Z. X.; Guo, T. L. Heterostructured vertical organic transistor for high-performance optoelectronic memory and artificial synapse. ACS Photonics 2021, 8, 3094–3103.

[31]

Kim, S. G.; Kim, S. H.; Park, J.; Kim, G. S.; Park, J. H.; Saraswat, K. C.; Kim, J.; Yu, H. Y. Infrared detectable MoS2 phototransistor and its application to artificial multilevel optic-neural synapse. ACS Nano 2019, 13, 10294–10300.

[32]

Tang, J.; He, C. L.; Tang, J. S.; Yue, K.; Zhang, Q. T.; Liu, Y. Z.; Wang, Q. Q.; Wang, S. P.; Li, N.; Shen, C. et al. A reliable all-2D materials artificial synapse for high energy-efficient neuromorphic computing. Adv. Funct. Mater. 2021, 31, 2011083.

[33]

Jin, C. X.; Liu, W. R.; Xu, Y. C.; Huang, Y. L.; Nie, Y. L.; Shi, X. F.; Zhang, G. M.; He, P.; Zhang, J.; Cao, H. T. et al. Artificial vision adaption mimicked by an optoelectrical In2O3 transistor array. Nano Lett. 2022, 22, 3372–3379.

[34]

Zhao, T. S.; Zhao, C.; Xu, W. Y.; Liu, Y. N.; Gao, H.; Mitrovic, I. Z.; Lim, E. G.; Yang, L.; Zhao, C. Z. Bio-inspired photoelectric artificial synapse based on two-dimensional Ti3C2Tx MXenes floating gate. Adv. Funct. Mater. 2021, 31, 2106000.

[35]

Wang, S. Y.; Chen, C. S.; Yu, Z. H.; He, Y. L.; Chen, X. Y.; Wan, Q.; Shi, Y.; Zhang, D. W.; Zhou, H.; Wang, X. R. et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 2019, 31, 1806227.

[36]

Zhao, P. F.; Ji, R. X.; Lao, J.; Jiang, C. L.; Tian, B. B.; Luo, C. H.; Lin, H. C.; Peng, H.; Duan, C. G. Multifunctional two-terminal optoelectronic synapse based on zinc oxide/poly(3-hexylthiophene) heterojunction for neuromorphic computing. ACS Appl. Polym. Mater. 2022, 4, 5688–5695.

[37]

Chen, C. S.; He, Y. L.; Mao, H. W.; Zhu, L.; Wang, X. J.; Zhu, Y.; Zhu, Y. X.; Shi, Y.; Wan, C. J.; Wan, Q. A photoelectric spiking neuron for visual depth perception. Adv. Mater. 2022, 34, 2201895.

[38]

Xu, Y. C.; Zhang, G. M.; Liu, W. R.; Jin, C. X.; Nie, Y. L.; Sun, J.; Yang, J. L. Flexible multiterminal photoelectronic neurotransistors based on self-assembled rubber semiconductors for spatiotemporal information processing. SmartMat 2023, 4, e1162.

[39]

Wan, C. J.; Cai, P. Q.; Guo, X. T.; Wang, M.; Matsuhisa, N.; Yang, L.; Lv, Z. S.; Luo, Y. F.; Loh, X. J.; Chen, X. D. An artificial sensory neuron with visual-haptic fusion. Nat. Commun. 2020, 11, 4602.

[40]

Lee, T. J.; Yun, K. R.; Kim, S. K.; Kim, J. H.; Jin, J.; Sim, K. B.; Lee, D. H.; Hwang, G. W.; Seong, T. Y. Realization of an artificial visual nervous system using an integrated optoelectronic device array. Adv. Mater. 2021, 33, 2105485.

[41]

Zeng, H. A.; Chen, Q. Z.; Shan, L. T.; Yan, Y. J.; Gao, C. S.; Lu, W. J.; Chen, H. P.; Guo, T. L. A light-emitting electrochemical artificial synapse with dual output of photoelectric signals. Sci. China Mater. 2022, 65, 2511–2520.

[42]

Bian, H. Y.; Qin, X.; Wu, Y. M.; Yi, Z. G.; Liu, S. R.; Wang, Y.; Brites, C. D. S.; Carlos, L. D.; Liu, X. G. Multimodal tuning of synaptic plasticity using persistent luminescent memitters. Adv. Mater. 2022, 34, 2101895.

[43]

Gao, H. K.; Miao, Z. G.; Qin, Z. S.; Yang, J. X.; Wang, T. Y.; Gao, C.; Dong, H. L.; Hu, W. P. Redistributed current density in lateral organic light-emitting transistors enabling uniform area emission with good stability and arbitrary tunability. Adv. Mater. 2022, 34, 2108795.

[44]

Stelzer, F.; Röhm, A.; Vicente, R.; Fischer, I.; Yanchuk, S. Deep neural networks using a single neuron: Folded-in-time architecture using feedback-modulated delay loops. Nat. Commun. 2021, 12, 5164.

[45]

Chen, Y. S.; Wang, H. L.; Luo, F.; Montes-García, V.; Liu, Z. Y.; Samorì, P. Nanofloating gate modulated synaptic organic light-emitting transistors for reconfigurable displays. Sci. Adv. 2022, 8, eabq4824.

[46]

Liang, K.; Wang, R.; Huo, B. B.; Ren, H. H.; Li, D. W.; Wang, Y.; Tang, Y. J.; Chen, Y. T.; Song, C. Y.; Li, F. F. et al. Fully printed optoelectronic synaptic transistors based on quantum dot-metal oxide semiconductor heterojunctions. ACS Nano 2022, 16, 8651–8661.

[47]

Zucker, R. S.; Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 2002, 64, 355–405.

[48]

John, R. A.; Liu, F. C.; Chien, N. A.; Kulkarni, M. R.; Zhu, C.; Fu, Q. D.; Basu, A.; Liu, Z.; Mathews, N. Synergistic gating of electro-iono-photoactive 2D chalcogenide neuristors: Coexistence of hebbian and homeostatic synaptic metaplasticity. Adv. Mater. 2018, 30, 1800220.

[49]

Jha, P. Effect of UV irradiation on different types of luminescence of SrAl2O4:Eu,Dy phosphors. Luminescence 2016, 31, 1302–1305.

[50]

Jha, P.; Chandra, B. P. Mechanoluminescence of SrAl2O4:Eu,Dy nanophosphors induced by low impact velocity. Luminescence 2017, 32, 171–176.

[51]

Reese, W. M.; Burch, P.; Korpusik, A. B.; Liu, S. E.; Loskill, P.; Messersmith, P. B.; Healy, K. E. Facile macrocyclic polyphenol barrier coatings for PDMS microfluidic devices. Adv. Funct. Mater. 2020, 30, 2001274.

[52]

Zhu, L. Q.; Wan, C. J.; Guo, L. Q.; Shi, Y.; Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 2014, 5, 3158.

[53]

Yu, F.; Zhu, L. Q.; Gao, W. T.; Fu, Y. M.; Xiao, H.; Tao, J.; Zhou, J. M. Chitosan-based polysaccharide-gated flexible indium tin oxide synaptic transistor with learning abilities. ACS Appl. Mater. Interfaces 2018, 10, 16881–16886.

[54]

Lee, Y. R.; Trung, T. Q.; Hwang, B. U.; Lee, N. E. A flexible artificial intrinsic-synaptic tactile sensory organ. Nat. Commun. 2020, 11, 2753.

Nano Research
Pages 10004-10010
Cite this article:
Lu W, Chen Q, Zeng H, et al. All optical artificial synapses based on long-afterglow material for optical neural network. Nano Research, 2023, 16(7): 10004-10010. https://doi.org/10.1007/s12274-023-5566-5
Topics:

1106

Views

7

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 13 December 2022
Revised: 07 February 2023
Accepted: 09 February 2023
Published: 18 March 2023
© Tsinghua University Press 2023
Return