AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

CRISPR/Cas systems for the detection of nucleic acid and non-nucleic acid targets

Weiran Su1,2,3,§Junru Li1,2,3,§Chen Ji1,2,3Congshuo Chen1,2,3Yuzheng Wang1,2,3Huili Dai1,2,3( )Fengqin Li1,2,3( )Peifeng Liu1,2,3( )
State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China

§ Weiran Su and Junru Li contributed equally to this work.

Show Author Information

Graphical Abstract

CRISPR/Cas systems powered the detection of nucleic acid and non-nucleic acid targets.

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems are becoming powerful tools for disease biomarkers detection. Due to the specific recognition, cis-cleavage and nonspecific trans-cleavage capabilities, CRISPR/Cas systems have implemented the detection of nucleic acid targets (DNA and RNA) as well as non-nucleic acid targets (e.g., proteins, exosomes, cells, and small molecules). In this review, we first summarize the principles and characteristics of various CRISPR/Cas systems, including CRISPR/Cas9, Cas12, Cas13 and Cas14 systems. Then, various types of applications of CRISPR/Cas systems used in detecting nucleic and non-nucleic acid targets are introduced emphatically. Finally, the prospects and challenges of their applications in biosensing are discussed.

References

[1]

Bhaya, D.; Davison, M.; Barrangou, R. CRISPR-Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet. 2011, 45, 273–297.

[2]

Cong, L.; Ran, F. A.; Cox, D.; Lin, S. L.; Barretto, R.; Habib, N.; Hsu, P. D.; Wu, X. B.; Jiang, W. Y.; Marraffini, L. A. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823.

[3]

Ran, F. A.; Hsu, P. D.; Wright, J.; Agarwala, V.; Scott, D. A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308.

[4]

Shalem, O.; Sanjana, N. E.; Zhang, F. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 2015, 16, 299–311.

[5]

Wiedenheft, B.; Sternberg, S. H.; Doudna, J. A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012, 482, 331–338.

[6]

Hilton, I. B.; D'Ippolito, A. M.; Vockley, C. M.; Thakore, P. I.; Crawford, G. E.; Reddy, T. E.; Gersbach, C. A. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 2015, 33, 510–517.

[7]

Gootenberg, J. S.; Abudayyeh, O. O.; Lee, J. W.; Essletzbichler, P.; Dy, A. J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N. M.; Freije, C. A. et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442.

[8]

Terns, M. P.; Terns, R. M. CRISPR-based adaptive immune systems. Curr. Opin. Microbiol. 2011, 14, 321–327.

[9]

Deltcheva, E.; Chylinski, K.; Sharma, C. M.; Gonzales, K.; Chao, Y. J.; Pirzada, Z. A.; Eckert, M. R.; Vogel, J.; Charpentier, E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011, 471, 602–607.

[10]

Knott, G. J.; Doudna, J. A. CRISPR-Cas guides the future of genetic engineering. Science 2018, 361, 866–869.

[11]

Mali, P.; Yang, L. H.; Esvelt, K. M.; Aach, J.; Guell, M.; DiCarlo, J. E.; Norville, J. E.; Church, G. M. RNA-guided human genome engineering via Cas9. Science 2013, 339, 823–826.

[12]

Makarova, K. S.; Haft, D. H.; Barrangou, R.; Brouns, S. J. J.; Charpentier, E.; Horvath, P.; Moineau, S.; Mojica, F. J. M.; Wolf, Y. I.; Yakunin, A. F. et al. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 2011, 9, 467–477.

[13]

Makarova, K. S.; Wolf, Y. I.; Iranzo, J.; Shmakov, S. A.; Alkhnbashi, O. S.; Brouns, S. J. J.; Charpentier, E.; Cheng, D.; Haft, D. H.; Horvath, P. et al. Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants. Nat. Rev. Microbiol. 2020, 18, 67–83.

[14]

Shmakov, S.; Smargon, A.; Scott, D.; Cox, D.; Pyzocha, N.; Yan, W.; Abudayyeh, O. O.; Gootenberg, J. S.; Makarova, K. S.; Wolf, Y. I. et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol. 2017, 15, 169–182.

[15]

Makarova, K. S.; Zhang, F.; Koonin, E. V. SnapShot: Class 2 CRISPR-Cas systems. Cell 2017, 168, 328–328.e1.

[16]

Shmakov, S.; Abudayyeh, O. O.; Makarova, K. S.; Wolf, Y. I.; Gootenberg, J. S.; Semenova, E.; Minakhin, L.; Joung, J.; Konermann, S.; Severinov, K. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 2015, 60, 385–397.

[17]

Makarova, K. S.; Wolf, Y. I.; Alkhnbashi, O. S.; Costa, F.; Shah, S. A.; Saunders, S. J.; Barrangou, R.; Brouns, S. J. J.; Charpentier, E.; Haft, D. H. et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 2015, 13, 722–736.

[18]

Saiki, R. K.; Gelfand, D. H.; Stoffel, S.; Scharf, S. J.; Higuchi, R.; Horn, G. T.; Mullis, K. B.; Erlich, H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988, 239, 487–491.

[19]

Abravaya, K.; Carrino, J. J.; Muldoon, S.; Lee, H. H. Detection of point mutations with a modified ligase chain reaction (Gap-LCR). Nucleic Acids Res. 1995, 23, 675–682.

[20]

Walker, G. T.; Little, M. C.; Nadeau, J. G.; Shank, D. D. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc. Natl. Acad. Sci. USA 1992, 89, 392–396.

[21]

Murakami, T.; Sumaoka, J.; Komiyama, M. Sensitive isothermal detection of nucleic-acid sequence by primer generation-rolling circle amplification. Nucleic Acids Res. 2009, 37, e19.

[22]

Kashir, J.; Yaqinuddin, A. Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19. Med. Hypotheses 2020, 141, 109786.

[23]

Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821.

[24]

Gilbert, L. A.; Larson, M. H.; Morsut, L.; Liu, Z. R.; Brar, G. A.; Torres, S. E.; Stern-Ginossar, N.; Brandman, O.; Whitehead, E. H.; Doudna, J. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 2013, 154, 442–451.

[25]

Pardee, K.; Green, A. A.; Takahashi, M. K.; Braff, D.; Lambert, G.; Lee, J. W.; Ferrante, T.; Ma, D.; Donghia, N.; Fan, M. et al. Rapid, low-cost detection of zika virus using programmable biomolecular components. Cell 2016, 165, 1255–1266.

[26]

Jiang, F. G.; Doudna, J. A. CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 2017, 46, 505–529.

[27]

Nishimasu, H.; Ran, F. A.; Hsu, P. D.; Konermann, S.; Shehata, S. I.; Dohmae, N.; Ishitani, R.; Zhang, F.; Nureki, O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014, 156, 935–949.

[28]

Gasiunas, G.; Barrangou, R.; Horvath, P.; Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 2012, 109, E2579–E2586.

[29]

O'Connell, M. R.; Oakes, B. L.; Sternberg, S. H.; East-Seletsky, A.; Kaplan, M.; Doudna, J. A. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 2014, 516, 263–266.

[30]

Dominguez, A. A.; Lim, W. A.; Qi, L. S. Beyond editing: Repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell. Biol. 2016, 17, 5–15.

[31]

Zetsche, B.; Gootenberg, J. S.; Abudayyeh, O. O.; Slaymaker, I. M.; Makarova, K. S.; Essletzbichler, P.; Volz, S. E.; Joung, J.; Van Der Oost, J.; Regev, A. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015, 163, 759–771.

[32]

Fonfara, I.; Richter, H.; Bratovič, M.; Le Rhun, A.; Charpentier, E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 2016, 532, 517–521.

[33]

Swarts, D. C.; Van Der Oost, J.; Jinek, M. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol. Cell 2017, 66, 221–233.e4.

[34]

Dong, D.; Ren, K.; Qiu, X. L.; Zheng, J. L.; Guo, M. H.; Guan, X. Y.; Liu, H. N.; Li, N. N.; Zhang, B. L.; Yang, D. J. et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 2016, 532, 522–526.

[35]

Jamaspishvili, T.; Berman, D. M.; Ross, A. E.; Scher, H. I.; De Marzo, A. M.; Squire, J. A.; Lotan, T. L. Clinical implications of PTEN loss in prostate cancer. Nat. Rev. Urol. 2018, 15, 222–234.

[36]

Chen, J. S.; Ma, E. B.; Harrington, L. B.; Da Costa, M.; Tian, X. R.; Palefsky, J. M.; Doudna, J. A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439.

[37]

Pickar-Oliver, A.; Gersbach, C. A. The next generation of CRISPR-Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 2019, 20, 490–507.

[38]

Li, S. Y.; Cheng, Q. X.; Liu, J. K.; Nie, X. Q.; Zhao, G. P.; Wang, J. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res. 2018, 28, 491–493.

[39]

Yan, W. X.; Hunnewell, P.; Alfonse, L. E.; Carte, J. M.; Keston-Smith, E.; Sothiselvam, S.; Garrity, A. J.; Chong, S.; Makarova, K. S.; Koonin, E. V. et al. Functionally diverse type V CRISPR-Cas systems. Science 2019, 363, 88–91.

[40]

Strecker, J.; Jones, S.; Koopal, B.; Schmid-Burgk, J.; Zetsche, B.; Gao, L. Y.; Makarova, K. S.; Koonin, E. V.; Zhang, F. Engineering of CRISPR-Cas12b for human genome editing. Nat. Commun. 2019, 10, 212.

[41]

Teng, F.; Cui, T. T.; Feng, G. H.; Guo, L.; Xu, K.; Gao, Q. Q.; Li, T. D.; Li, J.; Zhou, Q.; Li, W. Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov. 2018, 4, 63.

[42]

Liu, L.; Chen, P.; Wang, M.; Li, X. Y.; Wang, J. Y.; Yin, M. L.; Wang, Y. L. C2c1-sgRNA complex structure reveals RNA-guided DNA cleavage mechanism. Mol. Cell 2017, 65, 310–322.

[43]

Cox, D. B. T.; Gootenberg, J. S.; Abudayyeh, O. O.; Franklin, B.; Kellner, M. J.; Joung, J.; Zhang, F. RNA editing with CRISPR-Cas13. Science 2017, 358, 1019–1027.

[44]

Abudayyeh, O. O.; Gootenberg, J. S.; Essletzbichler, P.; Han, S.; Joung, J.; Belanto, J. J.; Verdine, V.; Cox, D. B. T.; Kellner, M. J.; Regev, A. et al. RNA targeting with CRISPR-Cas13. Nature 2017, 550, 280–284.

[45]

Harrington, L. B.; Burstein, D.; Chen, J. S.; Paez-Espino, D.; Ma, E. B.; Witte, I. P.; Cofsky, J. C.; Kyrpides, N. C.; Banfield, J. F.; Doudna, J. A. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 2018, 362, 839–842.

[46]

Aquino-Jarquin, G. CRISPR-Cas14 is now part of the artillery for gene editing and molecular diagnostic. Nanomedicine 2019, 18, 428–431.

[47]

Karvelis, T.; Bigelyte, G.; Young, J. K.; Hou, Z. L.; Zedaveinyte, R.; Budre, K.; Paulraj, S.; Djukanovic, V.; Gasior, S.; Silanskas, A. et al. PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Res. 2020, 48, 5016–5023.

[48]

Ma, E. B.; Harrington, L. B.; O'Connell, M. R.; Zhou, K. H.; Doudna, J. A. Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes. Mol. Cell 2015, 60, 398–407.

[49]

Zhang, K. X.; Deng, R. J.; Teng, X. C.; Li, Y.; Sun, Y. P.; Ren, X. J.; Li, J. H. Direct visualization of single-nucleotide variation in mtDNA using a CRISPR/Cas9-mediated proximity ligation assay. J. Am. Chem. Soc. 2018, 140, 11293–11301.

[50]

Lee, S. H.; Yu, J.; Hwang, G. H.; Kim, S.; Kim, H. S.; Ye, S.; Kim, K.; Park, J.; Park, D. Y.; Cho, Y. K. et al. CUT-PCR: CRISPR-mediated, ultrasensitive detection of target DNA using PCR. Oncogene 2017, 36, 6823–6829.

[51]

Huang, M. Q.; Zhou, X. M.; Wang, H. Y.; Xing, D. Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection. Anal. Chem. 2018, 90, 2193–2200.

[52]

Li, S. Y.; Cheng, Q. X.; Wang, J. M.; Li, X. Y.; Zhang, Z. L.; Gao, S.; Cao, R. B.; Zhao, G. P.; Wang, J. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 2018, 4, 20.

[53]

Li, L. X.; Li, S. Y.; Wu, N.; Wu, J. C.; Wang, G.; Zhao, G. P.; Wang, J. HOLMESv2: A CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth. Biol. 2019, 8, 2228–2237.

[54]

Teng, F.; Guo, L.; Cui, T. T.; Wang, X. G.; Xu, K.; Gao, Q. Q.; Zhou, Q.; Li, W. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biol. 2019, 20, 132.

[55]

Taylor, D. W.; Zhu, Y. F.; Staals, R. H. J.; Kornfeld, J. E.; Shinkai, A.; Van Der Oost, J.; Nogales, E.; Doudna, J. A. Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning. Science 2015, 348, 581–585.

[56]

Ackerman, C. M.; Myhrvold, C.; Thakku, S. G.; Freije, C. A.; Metsky, H. C.; Yang, D. K.; Ye, S. H.; Boehm, C. K.; Kosoko-Thoroddsen, T. S. F.; Kehe, J. et al. Massively multiplexed nucleic acid detection with Cas13. Nature 2020, 582, 277–282.

[57]

Myhrvold, C.; Freije, C. A.; Gootenberg, J. S.; Abudayyeh, O. O.; Metsky, H. C.; Durbin, A. F.; Kellner, M. J.; Tan, A. L.; Paul, L. M.; Parham, L. A. et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science 2018, 360, 444–448.

[58]

Freije, C. A.; Myhrvold, C.; Boehm, C. K.; Lin, A. E.; Welch, N. L.; Carter, A.; Metsky, H. C.; Luo, C. Y.; Abudayyeh, O. O.; Gootenberg, J. S. et al. Programmable inhibition and detection of RNA viruses using Cas13. Mol. Cell 2019, 76, 826–837.e11.

[59]
Joung, J.; Ladha, A.; Saito, M.; Segel, M.; Bruneau, R.; Huang, M. L. W.; Kim, N. G.; Yu, X.; Li, J.; Walker, B. D. et al. Point-of-care testing for COVID-19 using SHERLOCK diagnostics. 2020, medRxiv:2020.05.04.20091231. medRxiv.org - the preprint server for Health Sciences. https://doi.org/10.1101/2020.05.04.20091231 (accessed May 8, 2020).
[60]

Arizti-Sanz, J.; Freije, C. A.; Stanton, A. C.; Petros, B. A.; Boehm, C. K.; Siddiqui, S.; Shaw, B. M.; Adams, G.; Kosoko-Thoroddsen, T. S. F.; Kemball, M. E. et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat. Commun. 2020, 11, 5921.

[61]

Rauch, J. N.; Valois, E.; Solley, S. C.; Braig, F.; Lach, R. S.; Audouard, M.; Ponce-Rojas, J. C.; Costello, M. S.; Baxter, N. J.; Kosik, K. S. et al. A scalable, easy-to-deploy protocol for Cas13-based detection of SARS-CoV-2 genetic material. J. Clin. Microbiol. 2021, 59, e02402–20.

[62]

Ponce-Rojas, J. C.; Costello, M. S.; Proctor, D. A.; Kosik, K. S.; Wilson, M. Z.; Arias, C.; Acosta-Alvear, D. A fast and accessible method for the isolation of RNA, DNA, and protein to facilitate the detection of SARS-CoV-2. J. Clin. Microbiol. 2021, 59, e02403–20.

[63]

Vangah, S. J.; Katalani, C.; Boone, H. A.; Hajizade, A.; Sijercic, A.; Ahmadian, G. CRISPR-based diagnosis of infectious and noninfectious diseases. Biol. Proced. Online 2020, 22, 22.

[64]

Guo, L.; Sun, X. H.; Wang, X. E.; Liang, C.; Jiang, H. P.; Gao, Q. Q.; Dai, M. Y.; Qu, B.; Fang, S.; Mao, Y. H. et al. SARS-CoV-2 detection with CRISPR diagnostics. Cell Discov. 2020, 6, 34.

[65]

Liu, T. Y.; Knott, G. J.; Smock, D. C. J.; Desmarais, J. J.; Son, S.; Bhuiya, A.; Jakhanwal, S.; Prywes, N.; Agrawal, S.; De León Derby, M. D. et al. Accelerated RNA detection using tandem CRISPR nucleases. Nat. Chem. Biol. 2021, 17, 982–988.

[66]

Tian, T.; Shu, B. W.; Jiang, Y. Z.; Ye, M. M.; Liu, L.; Guo, Z. H.; Han, Z. P.; Wang, Z.; Zhou, X. M. An ultralocalized Cas13a assay enables universal and nucleic acid amplification-free single-molecule RNA diagnostics. ACS Nano 2021, 15, 1167–1178.

[67]

Hajian, R.; Balderston, S.; Tran, T.; deBoer, T.; Etienne, J.; Sandhu, M.; Wauford, N. A.; Chung, J. Y.; Nokes, J.; Athaiya, M. et al. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 2019, 3, 427–437.

[68]

Fozouni, P.; Son, S.; De León Derby, M. D.; Knott, G. J.; Gray, C. N.; D'Ambrosio, M. V.; Zhao, C. Y.; Switz, N. A.; Kumar, G. R.; Stephens, S. I. et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell 2021, 184, 323–333.e9.

[69]

Dai, Y. F.; Somoza, R. A.; Wang, L.; Welter, J. F.; Li, Y.; Caplan, A. I.; Liu, C. C. Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor. Angew. Chem., Int. Ed. 2019, 58, 17399–17405.

[70]

Xu, W.; Jin, T.; Dai, Y. F.; Liu, C. C. Surpassing the detection limit and accuracy of the electrochemical DNA sensor through the application of CRISPR Cas systems. Biosens. Bioelectron. 2020, 155, 112100.

[71]

Jayasena, S. D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 1999, 45, 1628–1650.

[72]

Hermann, T.; Patel, D. J. Adaptive recognition by nucleic acid aptamers. Science 2000, 287, 820–825.

[73]

Liu, J. W.; Cao, Z. H.; Lu, Y. Functional nucleic acid sensors. Chem. Rev. 2009, 109, 1948–1998.

[74]

Kim, H.; Lee, S.; Yoon, J.; Song, J.; Park, H. G. CRISPR/Cas12a collateral cleavage activity for simple and rapid detection of protein/small molecule interaction. Biosens. Bioelectron. 2021, 194, 113587.

[75]

Chen, M. M.; Zhang, J. Y.; Peng, Y.; Bai, J. L.; Li, S.; Han, D. P.; Ren, S. Y.; Qin, K.; Zhou, H. Y.; Han, T. et al. Design and synthesis of DNA hydrogel based on EXPAR and CRISPR/Cas14a for ultrasensitive detection of creatine kinase MB. Biosens. Bioelectron. 2022, 218, 114792.

[76]

Lv, Z. X.; Wang, Q. Q.; Yang, M. H. Multivalent duplexed-aptamer networks regulated a CRISPR-Cas12a system for circulating tumor cell detection. Anal. Chem. 2021, 93, 12921–12929.

[77]

Ding, L. H.; Wu, Y.; Liu, L. E.; He, L. L.; Yu, S. C.; Effah, C. Y.; Liu, X.; Qu, L. B.; Wu, Y. J. Universal DNAzyme walkers-triggered CRISPR-Cas12a/Cas13a bioassay for the synchronous detection of two exosomal proteins and its application in intelligent diagnosis of cancer. Biosens. Bioelectron. 2023, 219, 114827.

[78]

Myers, S. A.; Wright, J.; Peckner, R.; Kalish, B. T.; Zhang, F.; Carr, S. A. Discovery of proteins associated with a predefined genomic locus via dCas9-APEX-mediated proximity labeling. Nat. Methods 2018, 15, 437–439.

[79]

Yi, W. K.; Li, J. Y.; Zhu, X. X.; Wang, X.; Fan, L. G.; Sun, W. J.; Liao, L. B.; Zhang, J. L.; Li, X. Y.; Ye, J. et al. CRISPR-assisted detection of RNA-protein interactions in living cells. Nat. Methods 2020, 17, 685–688.

[80]

Zhao, X. X.; Zhang, W. Q.; Qiu, X. P.; Mei, Q.; Luo, Y.; Fu, W. L. Rapid and sensitive exosome detection with CRISPR/Cas12a. Anal. Bioanal. Chem. 2020, 412, 601–609.

[81]

Ebright, R. Y.; Lee, S.; Wittner, B. S.; Niederhoffer, K. L.; Nicholson, B. T.; Bardia, A.; Truesdell, S.; Wiley, D. F.; Wesley, B.; Li, S. et al. Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis. Science 2020, 367, 1468–1473.

[82]

Xiong, Y.; Zhang, J. J.; Yang, Z. L.; Mou, Q. B.; Ma, Y.; Xiong, Y. H.; Lu, Y. Functional DNA regulated CRISPR-Cas12a sensors for point-of-care diagnostics of non-nucleic-acid targets. J. Am. Chem. Soc. 2020, 142, 207–213.

[83]

Samanta, D.; Ebrahimi, S. B.; Ramani, N.; Mirkin, C. A. Enhancing CRISPR-Cas-mediated detection of nucleic acid and non-nucleic acid targets using enzyme-labeled reporters. J. Am. Chem. Soc. 2022, 144, 16310–16315.

[84]

Peng, H. Y.; Newbigging, A. M.; Wang, Z. X.; Tao, J.; Deng, W. C.; Le, X. C.; Zhang, H. Q. DNAzyme-mediated assays for amplified detection of nucleic acids and proteins. Anal. Chem. 2018, 90, 190–207.

[85]

Chen, Y. J.; Wu, H.; Qian, S. W. J.; Yu, X. P.; Chen, H.; Wu, J. Applying CRISPR/Cas system as a signal enhancer for DNAzyme-based lead ion detection. Anal. Chim. Acta 2022, 1192, 339356.

[86]

Li, Q.; Li, X. B.; Zhou, P. Y.; Chen, R.; Xiao, R.; Pang, Y. F. Split aptamer regulated CRISPR/Cas12a biosensor for 17β-estradiol through a gap-enhanced Raman tags based lateral flow strategy. Biosens. Bioelectron. 2022, 215, 114548.

[87]

Libis, V.; Delépine, B.; Faulon, J. L. Sensing new chemicals with bacterial transcription factors. Curr. Opin. Microbiol. 2016, 33, 105–112.

[88]

Liang, M. D.; Li, Z. L.; Wang, W. S.; Liu, J. K.; Liu, L. S.; Zhu, G. L.; Karthik, L.; Wang, M.; Wang, K. F.; Wang, Z. et al. A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nat. Commun. 2019, 10, 3672.

[89]

Li, F. Q.; Yu, Z. G.; Han, X. D.; Lai, R. Y. Electrochemical aptamer-based sensors for food and water analysis: A review. Anal. Chim. Acta 2019, 1051, 1–23.

[90]

Hu, J. Y.; Song, H. J.; Zhou, J.; Liu, R.; Lv, Y. Metal-tagged CRISPR/Cas12a bioassay enables ultrasensitive and highly selective evaluation of kanamycin bioaccumulation in fish samples. Anal. Chem. 2021, 93, 14214–14222.

[91]

Hu, J. Y.; Zhou, J.; Liu, R.; Lv, Y. Element probe based CRISPR/Cas14 bioassay for non-nucleic-acid targets. Chem. Commun. 2021, 57, 10423–10426.

Nano Research
Pages 9940-9953
Cite this article:
Su W, Li J, Ji C, et al. CRISPR/Cas systems for the detection of nucleic acid and non-nucleic acid targets. Nano Research, 2023, 16(7): 9940-9953. https://doi.org/10.1007/s12274-023-5567-4
Topics:

1112

Views

11

Crossref

10

Web of Science

13

Scopus

1

CSCD

Altmetrics

Received: 19 December 2022
Revised: 08 February 2023
Accepted: 09 February 2023
Published: 20 March 2023
© Tsinghua University Press 2023
Return