AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Selective Pb2+ removal and electrochemical regeneration of fresh and recycled FeOOH

Lei Wang1,2Lexane Deligniere1,2Samantha Husmann1Regina Leiner3Carsten Bahr4Shengjie Zhang5Chaochao Dun6Matthew M. Montemore5Markus Gallei3,7Jeffrey J. Urban6Choonsoo Kim8,9Volker Presser1,2,7( )
INM—Leibniz Institute for New Materials, Campus D2 2, Saarbrücken 66123, Germany
Department of Materials Science and Engineering, Saarland University, Campus D2 2, Saarbrücken 66123, Germany
Polymer Chemistry, Saarland University, Campus C4 2, Saarbrücken 66123, Germany
GEH Wasserchemie GmbH & Co. KG, Adolf-Köhne-Straße 4, Osnabrück 49090, Germany
Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA 94720, USA
Saarene–Saarland Center for Energy Materials and Sustainability, Campus C4 2, Saarbrücken 66123, Germany
Department of Environmental Engineering with Institute of Energy/Environment Convergence Technologies, Kongju National University, 1223-24 Cheonan-daero, Cheonan-si 31080, Republic of Korea
Department of Future Convergence Engineering, Kongju National University, 1223-24 Cheonan-daero, Cheonan-si 31080, Republic of Korea
Show Author Information

Graphical Abstract

FeOOH sorbents manifest high selectivity towards Pb2+ compared with Co2+ and Ni2+. Electrochemical operation of the FeOOH electrodes can be used to regenerate and enhance ion removal.

Abstract

Heavy metal pollution is a key environmental problem. Selectively extracting heavy metals could accomplish water purification and resource recycling simultaneously. Adsorption is a promising approach with a facile process, adaptability for the broad concentration of feed water, and high selectivity. However, the adsorption method faces challenges in synthesizing high-performance sorbents and regenerating adsorbents effectively. FeOOH is an environmentally friendly sorbent with low-cost production on a large scale. Nevertheless, the selectivity behavior and regeneration of FeOOH are seldom studied. Therefore, we investigated the selectivity of FeOOH in a mixed solution of Co2+, Ni2+, and Pb2+ and proposed to enhance the capacity of FeOOH and regenerate it by using external charges. Without charge, the FeOOH electrode shows a Pb2+ uptake capacity of 20 mg/g. After applying a voltage of −0.2/+0.8 V, the uptake capacity increases to a maximum of 42 mg/g and the desorption ratio is 70%–80%. In 35 cycles, FeOOH shows a superior selectivity towards Pb2+ compared with Co2+ and Ni2+, with a purity of 97% ± 3% in the extracts. The high selectivity is attributed to the lower activation energy for Pb2+ sorption. The capacity retentions at the 5th and the 35th cycles are ca. 80% and ca. 50%, respectively, comparable to the chemical regeneration method. With industrially exhausted granular ferric hydroxide as the electrode material, the system exhibits a Pb2+ uptake capacity of 37.4 mg/g with high selectivity. Our work demonstrates the feasibility of regenerating FeOOH by charge and provides a new approach for recycling and upcycling FeOOH sorbent.

Electronic Supplementary Material

Download File(s)
12274_2023_5569_MOESM1_ESM.pdf (2.6 MB)

References

[1]

Afonne, O. J.; Ifediba, E. C. Heavy metals risks in plant foods—Need to step up precautionary measures. Curr. Opin. Toxicol. 2020, 22, 1–6.

[2]

Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B. B.; Beeregowda, K. N. Toxicity, mechanism, and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72.

[3]

Singh, R.; Gautam, N.; Mishra, A.; Gupta, R. Heavy metals and living systems: An overview. Indian J. Pharmacol. 2011, 43, 246–253.

[4]

Chen, R.; Feng, J. Y.; Jeon, J.; Sheehan, T.; Rüttiger, C.; Gallei, M.; Shukla, D.; Su, X. Structure and potential-dependent selectivity in redox-metallopolymers: Electrochemically mediated multicomponent metal separations. Adv. Funct. Mater. 2021, 31, 2009307.

[5]

Doulakas, L.; Novy, K.; Stucki, S.; Comninellis, C. Recovery of Cu, Pb, Cd, and Zn from synthetic mixture by selective electrodeposition in chloride solution. Electrochim. Acta 2000, 46, 349–356.

[6]

Nekouei, R. K.; Pahlevani, F.; Assefi, M.; Maroufi, S.; Sahajwalla, V. Selective isolation of heavy metals from spent electronic waste solution by macroporous ion-exchange resins. J. Hazard. Mater. 2019, 371, 389–396.

[7]

Le, H. S.; Qiu, Y. R. Selective separation of Cd(II), Zn(II), and Pb(II) from Pb-Zn smelter wastewater via shear induced dissociation coupling with ultrafiltration. Korean J. Chem. Eng. 2020, 37, 784–791.

[8]

Ali, J.; Wang, H. B.; Ifthikar, J.; Khan, A.; Wang, T.; Zhan, K.; Shahzad, A.; Chen, Z. L.; Chen, Z. Q. Efficient, stable, and selective adsorption of heavy metals by thio-functionalized layered double hydroxide in diverse types of water. Chem. Eng. J. 2018, 332, 387–397.

[9]

Zhou, X.; Jin, C.; Liu, G. F.; Wu, G. M.; Huo, S. P.; Kong, Z. W. Functionalized lignin-based magnetic adsorbents with tunable structure for the efficient and selective removal of Pb(II) from aqueous solution. Chem. Eng. J. 2021, 420, 130409.

[10]

Liu, Y. P.; Zhang, W. L.; Zhao, C. C.; Wang, H.; Chen, J.; Yang, L.; Feng, J. T.; Yan, W. Study on the synthesis of poly(pyrrole methane)s with the hydroxyl in different substituent position and their selective adsorption for Pb2+. Chem. Eng. J. 2019, 361, 528–537.

[11]

Idris, S. A.; Harvey, S. R.; Gibson, L. T. Selective extraction of mercury(II) from water samples using mercapto functionalised-MCM-41 and regeneration of the sorbent using microwave digestion. J. Hazard. Mater. 2011, 193, 171–176.

[12]

Wang, F.; Lu, X. W.; Li, X. Y. Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate for effective metal recovery. J. Hazard. Mater. 2016, 308, 75–83.

[13]

Li, J.; Xie, L. X.; Guo, R.; Wang, H.; Liang, Z. P.; Yao, H. Q.; Ma, S. L. Facile preparation of Fe3O4/MoS4 for ultra fast and highly selective uptake towards Hg2+, Pb2+, and Ag+. J. Alloys Compd. 2020, 823, 153819.

[14]

Chen, A. H.; Yang, C. Y.; Chen, C. Y.; Chen, C. Y.; Chen, C. W. The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II), and Pb(II) ions in aqueous medium. J. Hazard. Mater. 2009, 163, 1068–1075.

[15]

Zhang, M. L.; Zhang, Z. H.; Liu, Y. N.; Yang, X.; Luo, L. J.; Chen, J. T.; Yao, S. Z. Preparation of core–shell magnetic ion-imprinted polymer for selective extraction of Pb(II) from environmental samples. Chem. Eng. J. 2011, 178, 443–450.

[16]

Ge, H. C.; Hua, T. T.; Chen, X. D. Selective adsorption of lead on grafted and crosslinked chitosan nanoparticles prepared by using Pb2+ as template. J. Hazard. Mater. 2016, 308, 225–232.

[17]

Li, H.; Li, W.; Zhang, Y. J.; Wang, T. S.; Wang, B.; Xu, W.; Jiang, L.; Song, W. G.; Shu, C. Y.; Wang, C. R. Chrysanthemum-like α-FeOOH microspheres produced by a simple green method and their outstanding ability in heavy metal ion removal. J. Mater. Chem. 2011, 21, 7878–7881.

[18]

Wang, B.; Wu, H. B.; Yu, L.; Xu, R.; Lim, T. T.; Lou, X. W. Template-free formation of uniform urchin-like α-FeOOH hollow spheres with superior capability for water treatment. Adv. Mater. 2012, 24, 1111–1116.

[19]

Rahimi, S.; Moattari, R. M.; Rajabi, L.; Derakhshan, A. A.; Keyhani, M. Iron oxide/hydroxide (α, γ-FeOOH) nanoparticles as high potential adsorbents for lead removal from polluted aquatic media. J. Ind. Eng. Chem. 2015, 23, 33–43.

[20]

Walsh, K.; Mayer, S.; Rehmann, D.; Hofmann, T.; Glas, K. Equilibrium data and its analysis with the Freundlich model in the adsorption of arsenic(V) on granular ferric hydroxide. Sep. Purif. Technol. 2020, 243, 116704.

[21]

Pranudta, A.; Chanthapon, N.; Kidkhunthod, P.; El-Moselhy, M. M.; Nguyen, T. T.; Padungthon, S. Selective removal of Pb from lead-acid battery wastewater using hybrid gel cation exchanger loaded with hydrated iron oxide nanoparticles: Fabrication, characterization, and pilot-scale validation. J. Environ. Chem. Eng. 2021, 9, 106282.

[22]

Wang, S. D.; Lan, H. C.; Liu, H. J.; Qu, J. H. Fabrication of FeOOH hollow microboxes for purification of heavy metal-contaminated water. Phys. Chem. Chem. Phys. 2016, 18, 9437–9445.

[23]

Liu, Y. B.; Yang, S. N.; Jiang, H. L.; Yang, B.; Fang, X. F.; Shen, C. S.; Yang, J. M.; Sand, W.; Li, F. Sea urchin-like FeOOH functionalized electrochemical CNT filter for one-step arsenite decontamination. J. Hazard. Mater. 2021, 407, 124384.

[24]

Aslan, M.; Zeiger, M.; Jäckel, N.; Grobelsek, I.; Weingarth, D.; Presser, V. Improved capacitive deionization performance of mixed hydrophobic/hydrophilic activated carbon electrodes. J. Phys. Condens. Matter 2016, 28, 114003.

[25]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[26]

Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Phys. Rev. B 1998, 57, 1505–1509.

[27]

Alexandrov, V.; Rosso, K. M. Ab initio modeling of Fe(II) adsorption and interfacial electron transfer at goethite (α-FeOOH) surfaces. Phys. Chem. Chem. Phys. 2015, 17, 14518–14531.

[28]

Otte, K.; Schmahl, W. W.; Pentcheva, R. DFT + U study of arsenate adsorption on FeOOH surfaces: Evidence for competing binding mechanisms. J. Phys. Chem. C 2013, 117, 15571–15582.

[29]

Otte, K.; Pentcheva, R.; Schmahl, W. W.; Rustad, J. R. Pressure-induced structural and electronic transitions in FeOOH from first principles. Phys. Rev. B 2009, 80, 205116.

[30]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[31]

Kresse, G.; Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[32]

Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric, and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276.

[33]

de la Fuente, D.; Alcántara, J.; Chico, B.; Díaz, I.; Jiménez, J. A.; Morcillo, M. Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres using XRD and SEM/micro-Raman techniques. Corros. Sci. 2016, 110, 253–264.

[34]

Das, S.; Hendry, M. J. Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chem. Geol. 2011, 290, 101–108.

[35]

Fu, X. H.; Jia, L. C.; Wang, A. L.; Cao, H. J.; Ling, Z. C.; Liu, C. Q.; Shi, E. B.; Wu, Z. C.; Li, B.; Zhang, J. Thermal stability of akaganeite and its desiccation process under conditions relevant to Mars. Icarus 2020, 336, 113435.

[36]

Xu, W.; Lan, H. C.; Wang, H. J.; Liu, H. M.; Qu, J. H. Comparing the adsorption behaviors of Cd, Cu, and Pb from water onto Fe-Mn binary oxide, MnO2, and FeOOH. Front. Environ. Sci. Eng. 2015, 9, 385–393.

[37]

Mohapatra, M.; Mohapatra, L.; Anand, S.; Mishra, B. K. One-pot synthesis of high surface area nano-akaganeite powder and its cation sorption behavior. J. Chem. Eng. Data 2010, 55, 1486–1491.

[38]

Mishra, S.; Verma, N. Surface ion imprinting-mediated carbon nanofiber-grafted highly porous polymeric beads: Synthesis and application towards selective removal of aqueous Pb(II). Chem. Eng. J. 2017, 313, 1142–1151.

[39]

Abdel-Samad, H.; Watson, P. R. An XPS study of the adsorption of lead on goethite (α-FeOOH). Appl. Surf. Sci. 1998, 136, 46–54.

[40]

Gunneriusson, L.; Lövgren, L.; Sjöberg, S. Complexation of Pb(II) at the goethite (α-FeOOH)/water interface: The influence of chloride. Geochim. Cosmochim. Acta 1994, 58, 4973–4983.

[41]

Sun, X. F.; Hu, C.; Hu, X. X.; Qu, J. H.; Yang, M. Characterization and adsorption performance of Zr-doped akaganéite for efficient arsenic removal. J. Chem. Technol. Biotechnol. 2013, 88, 629–635.

[42]

Nieboer, E.; Fletcher, G. G.; Thomassen, Y. Relevance of reactivity determinants to exposure assessment and biological monitoring of the elements. J. Environ. Monit. 1999, 1, 1–14.

[43]

Zhao, R.; Liu, J.; Gu, J. J. The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery. Appl. Energy 2015, 139, 220–229.

[44]

Yue, J.; Jiang, X. C.; Yu, A. B. Experimental and theoretical study on the β-FeOOH nanorods: Growth and conversion. J. Nanopart. Res. 2011, 13, 3961–3974.

[45]

Panayotova, M.; Velikov, B. Influence of zeolite transformation in a homoionic form on the removal of some heavy metal ions from wastewater. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2003, 38, 545–554.

[46]

Xiong, C.; Wang, S. X.; Sun, W. T.; Li, Y. Selective adsorption of Pb(II) from aqueous solution using nanosilica functionalized with diethanolamine: Equilibrium, kinetic, and thermodynamic. Microchem. J. 2019, 146, 270–278.

[47]

Chen, Y. B.; Tang, J. L.; Wang, S. X.; Zhang, L. B.; Sun, W. T. Bimetallic coordination polymer for highly selective removal of Pb(II): Activation energy, isosteric heat of adsorption, and adsorption mechanism. Chem. Eng. J. 2021, 425, 131474.

[48]

Chakravarty, S.; Mohanty, A.; Sudha, T. N.; Upadhyay, A. K.; Konar, J.; Sircar, J. K.; Madhukar, A.; Gupta, K. K. Removal of Pb(II) ions from aqueous solution by adsorption using bael leaves (Aegle marmelos). J. Hazard. Mater. 2010, 173, 502–509.

[49]

Sun, S. L.; Wang, L.; Wang, A. Q. Adsorption properties of crosslinked carboxymethyl-chitosan resin with Pb(II) as template ions. J. Hazard. Mater. 2006, 136, 930–937.

Nano Research
Pages 9352-9363
Cite this article:
Wang L, Deligniere L, Husmann S, et al. Selective Pb2+ removal and electrochemical regeneration of fresh and recycled FeOOH. Nano Research, 2023, 16(7): 9352-9363. https://doi.org/10.1007/s12274-023-5569-2
Topics:
Part of a topical collection:

1054

Views

8

Crossref

6

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 31 October 2022
Revised: 01 February 2023
Accepted: 09 February 2023
Published: 15 March 2023
© The Author(s) 2023
Return