Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Heavy metal pollution is a key environmental problem. Selectively extracting heavy metals could accomplish water purification and resource recycling simultaneously. Adsorption is a promising approach with a facile process, adaptability for the broad concentration of feed water, and high selectivity. However, the adsorption method faces challenges in synthesizing high-performance sorbents and regenerating adsorbents effectively. FeOOH is an environmentally friendly sorbent with low-cost production on a large scale. Nevertheless, the selectivity behavior and regeneration of FeOOH are seldom studied. Therefore, we investigated the selectivity of FeOOH in a mixed solution of Co2+, Ni2+, and Pb2+ and proposed to enhance the capacity of FeOOH and regenerate it by using external charges. Without charge, the FeOOH electrode shows a Pb2+ uptake capacity of 20 mg/g. After applying a voltage of −0.2/+0.8 V, the uptake capacity increases to a maximum of 42 mg/g and the desorption ratio is 70%–80%. In 35 cycles, FeOOH shows a superior selectivity towards Pb2+ compared with Co2+ and Ni2+, with a purity of 97% ± 3% in the extracts. The high selectivity is attributed to the lower activation energy for Pb2+ sorption. The capacity retentions at the 5th and the 35th cycles are ca. 80% and ca. 50%, respectively, comparable to the chemical regeneration method. With industrially exhausted granular ferric hydroxide as the electrode material, the system exhibits a Pb2+ uptake capacity of 37.4 mg/g with high selectivity. Our work demonstrates the feasibility of regenerating FeOOH by charge and provides a new approach for recycling and upcycling FeOOH sorbent.
Afonne, O. J.; Ifediba, E. C. Heavy metals risks in plant foods—Need to step up precautionary measures. Curr. Opin. Toxicol. 2020, 22, 1–6.
Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B. B.; Beeregowda, K. N. Toxicity, mechanism, and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72.
Singh, R.; Gautam, N.; Mishra, A.; Gupta, R. Heavy metals and living systems: An overview. Indian J. Pharmacol. 2011, 43, 246–253.
Chen, R.; Feng, J. Y.; Jeon, J.; Sheehan, T.; Rüttiger, C.; Gallei, M.; Shukla, D.; Su, X. Structure and potential-dependent selectivity in redox-metallopolymers: Electrochemically mediated multicomponent metal separations. Adv. Funct. Mater. 2021, 31, 2009307.
Doulakas, L.; Novy, K.; Stucki, S.; Comninellis, C. Recovery of Cu, Pb, Cd, and Zn from synthetic mixture by selective electrodeposition in chloride solution. Electrochim. Acta 2000, 46, 349–356.
Nekouei, R. K.; Pahlevani, F.; Assefi, M.; Maroufi, S.; Sahajwalla, V. Selective isolation of heavy metals from spent electronic waste solution by macroporous ion-exchange resins. J. Hazard. Mater. 2019, 371, 389–396.
Le, H. S.; Qiu, Y. R. Selective separation of Cd(II), Zn(II), and Pb(II) from Pb-Zn smelter wastewater via shear induced dissociation coupling with ultrafiltration. Korean J. Chem. Eng. 2020, 37, 784–791.
Ali, J.; Wang, H. B.; Ifthikar, J.; Khan, A.; Wang, T.; Zhan, K.; Shahzad, A.; Chen, Z. L.; Chen, Z. Q. Efficient, stable, and selective adsorption of heavy metals by thio-functionalized layered double hydroxide in diverse types of water. Chem. Eng. J. 2018, 332, 387–397.
Zhou, X.; Jin, C.; Liu, G. F.; Wu, G. M.; Huo, S. P.; Kong, Z. W. Functionalized lignin-based magnetic adsorbents with tunable structure for the efficient and selective removal of Pb(II) from aqueous solution. Chem. Eng. J. 2021, 420, 130409.
Liu, Y. P.; Zhang, W. L.; Zhao, C. C.; Wang, H.; Chen, J.; Yang, L.; Feng, J. T.; Yan, W. Study on the synthesis of poly(pyrrole methane)s with the hydroxyl in different substituent position and their selective adsorption for Pb2+. Chem. Eng. J. 2019, 361, 528–537.
Idris, S. A.; Harvey, S. R.; Gibson, L. T. Selective extraction of mercury(II) from water samples using mercapto functionalised-MCM-41 and regeneration of the sorbent using microwave digestion. J. Hazard. Mater. 2011, 193, 171–176.
Wang, F.; Lu, X. W.; Li, X. Y. Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate for effective metal recovery. J. Hazard. Mater. 2016, 308, 75–83.
Li, J.; Xie, L. X.; Guo, R.; Wang, H.; Liang, Z. P.; Yao, H. Q.; Ma, S. L. Facile preparation of Fe3O4/MoS4 for ultra fast and highly selective uptake towards Hg2+, Pb2+, and Ag+. J. Alloys Compd. 2020, 823, 153819.
Chen, A. H.; Yang, C. Y.; Chen, C. Y.; Chen, C. Y.; Chen, C. W. The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II), and Pb(II) ions in aqueous medium. J. Hazard. Mater. 2009, 163, 1068–1075.
Zhang, M. L.; Zhang, Z. H.; Liu, Y. N.; Yang, X.; Luo, L. J.; Chen, J. T.; Yao, S. Z. Preparation of core–shell magnetic ion-imprinted polymer for selective extraction of Pb(II) from environmental samples. Chem. Eng. J. 2011, 178, 443–450.
Ge, H. C.; Hua, T. T.; Chen, X. D. Selective adsorption of lead on grafted and crosslinked chitosan nanoparticles prepared by using Pb2+ as template. J. Hazard. Mater. 2016, 308, 225–232.
Li, H.; Li, W.; Zhang, Y. J.; Wang, T. S.; Wang, B.; Xu, W.; Jiang, L.; Song, W. G.; Shu, C. Y.; Wang, C. R. Chrysanthemum-like α-FeOOH microspheres produced by a simple green method and their outstanding ability in heavy metal ion removal. J. Mater. Chem. 2011, 21, 7878–7881.
Wang, B.; Wu, H. B.; Yu, L.; Xu, R.; Lim, T. T.; Lou, X. W. Template-free formation of uniform urchin-like α-FeOOH hollow spheres with superior capability for water treatment. Adv. Mater. 2012, 24, 1111–1116.
Rahimi, S.; Moattari, R. M.; Rajabi, L.; Derakhshan, A. A.; Keyhani, M. Iron oxide/hydroxide (α, γ-FeOOH) nanoparticles as high potential adsorbents for lead removal from polluted aquatic media. J. Ind. Eng. Chem. 2015, 23, 33–43.
Walsh, K.; Mayer, S.; Rehmann, D.; Hofmann, T.; Glas, K. Equilibrium data and its analysis with the Freundlich model in the adsorption of arsenic(V) on granular ferric hydroxide. Sep. Purif. Technol. 2020, 243, 116704.
Pranudta, A.; Chanthapon, N.; Kidkhunthod, P.; El-Moselhy, M. M.; Nguyen, T. T.; Padungthon, S. Selective removal of Pb from lead-acid battery wastewater using hybrid gel cation exchanger loaded with hydrated iron oxide nanoparticles: Fabrication, characterization, and pilot-scale validation. J. Environ. Chem. Eng. 2021, 9, 106282.
Wang, S. D.; Lan, H. C.; Liu, H. J.; Qu, J. H. Fabrication of FeOOH hollow microboxes for purification of heavy metal-contaminated water. Phys. Chem. Chem. Phys. 2016, 18, 9437–9445.
Liu, Y. B.; Yang, S. N.; Jiang, H. L.; Yang, B.; Fang, X. F.; Shen, C. S.; Yang, J. M.; Sand, W.; Li, F. Sea urchin-like FeOOH functionalized electrochemical CNT filter for one-step arsenite decontamination. J. Hazard. Mater. 2021, 407, 124384.
Aslan, M.; Zeiger, M.; Jäckel, N.; Grobelsek, I.; Weingarth, D.; Presser, V. Improved capacitive deionization performance of mixed hydrophobic/hydrophilic activated carbon electrodes. J. Phys. Condens. Matter 2016, 28, 114003.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Phys. Rev. B 1998, 57, 1505–1509.
Alexandrov, V.; Rosso, K. M. Ab initio modeling of Fe(II) adsorption and interfacial electron transfer at goethite (α-FeOOH) surfaces. Phys. Chem. Chem. Phys. 2015, 17, 14518–14531.
Otte, K.; Schmahl, W. W.; Pentcheva, R. DFT + U study of arsenate adsorption on FeOOH surfaces: Evidence for competing binding mechanisms. J. Phys. Chem. C 2013, 117, 15571–15582.
Otte, K.; Pentcheva, R.; Schmahl, W. W.; Rustad, J. R. Pressure-induced structural and electronic transitions in FeOOH from first principles. Phys. Rev. B 2009, 80, 205116.
Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Kresse, G.; Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric, and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276.
de la Fuente, D.; Alcántara, J.; Chico, B.; Díaz, I.; Jiménez, J. A.; Morcillo, M. Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres using XRD and SEM/micro-Raman techniques. Corros. Sci. 2016, 110, 253–264.
Das, S.; Hendry, M. J. Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chem. Geol. 2011, 290, 101–108.
Fu, X. H.; Jia, L. C.; Wang, A. L.; Cao, H. J.; Ling, Z. C.; Liu, C. Q.; Shi, E. B.; Wu, Z. C.; Li, B.; Zhang, J. Thermal stability of akaganeite and its desiccation process under conditions relevant to Mars. Icarus 2020, 336, 113435.
Xu, W.; Lan, H. C.; Wang, H. J.; Liu, H. M.; Qu, J. H. Comparing the adsorption behaviors of Cd, Cu, and Pb from water onto Fe-Mn binary oxide, MnO2, and FeOOH. Front. Environ. Sci. Eng. 2015, 9, 385–393.
Mohapatra, M.; Mohapatra, L.; Anand, S.; Mishra, B. K. One-pot synthesis of high surface area nano-akaganeite powder and its cation sorption behavior. J. Chem. Eng. Data 2010, 55, 1486–1491.
Mishra, S.; Verma, N. Surface ion imprinting-mediated carbon nanofiber-grafted highly porous polymeric beads: Synthesis and application towards selective removal of aqueous Pb(II). Chem. Eng. J. 2017, 313, 1142–1151.
Abdel-Samad, H.; Watson, P. R. An XPS study of the adsorption of lead on goethite (α-FeOOH). Appl. Surf. Sci. 1998, 136, 46–54.
Gunneriusson, L.; Lövgren, L.; Sjöberg, S. Complexation of Pb(II) at the goethite (α-FeOOH)/water interface: The influence of chloride. Geochim. Cosmochim. Acta 1994, 58, 4973–4983.
Sun, X. F.; Hu, C.; Hu, X. X.; Qu, J. H.; Yang, M. Characterization and adsorption performance of Zr-doped akaganéite for efficient arsenic removal. J. Chem. Technol. Biotechnol. 2013, 88, 629–635.
Nieboer, E.; Fletcher, G. G.; Thomassen, Y. Relevance of reactivity determinants to exposure assessment and biological monitoring of the elements. J. Environ. Monit. 1999, 1, 1–14.
Zhao, R.; Liu, J.; Gu, J. J. The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery. Appl. Energy 2015, 139, 220–229.
Yue, J.; Jiang, X. C.; Yu, A. B. Experimental and theoretical study on the β-FeOOH nanorods: Growth and conversion. J. Nanopart. Res. 2011, 13, 3961–3974.
Panayotova, M.; Velikov, B. Influence of zeolite transformation in a homoionic form on the removal of some heavy metal ions from wastewater. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2003, 38, 545–554.
Xiong, C.; Wang, S. X.; Sun, W. T.; Li, Y. Selective adsorption of Pb(II) from aqueous solution using nanosilica functionalized with diethanolamine: Equilibrium, kinetic, and thermodynamic. Microchem. J. 2019, 146, 270–278.
Chen, Y. B.; Tang, J. L.; Wang, S. X.; Zhang, L. B.; Sun, W. T. Bimetallic coordination polymer for highly selective removal of Pb(II): Activation energy, isosteric heat of adsorption, and adsorption mechanism. Chem. Eng. J. 2021, 425, 131474.
Chakravarty, S.; Mohanty, A.; Sudha, T. N.; Upadhyay, A. K.; Konar, J.; Sircar, J. K.; Madhukar, A.; Gupta, K. K. Removal of Pb(II) ions from aqueous solution by adsorption using bael leaves (Aegle marmelos). J. Hazard. Mater. 2010, 173, 502–509.
Sun, S. L.; Wang, L.; Wang, A. Q. Adsorption properties of crosslinked carboxymethyl-chitosan resin with Pb(II) as template ions. J. Hazard. Mater. 2006, 136, 930–937.