AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Selectivity switching between CO and formate for CO2 reduction on Sb modified amorphous ZnO by electronic effect

Hongyu Chen1Shoufu Cao2Lu Wang2Xiaojing Lin2Qiuying Zhu2Yizhu Shang2Shuxian Wei1Siyuan Liu2Zhaojie Wang2( )Baojun Wei1( )Xiaoqing Lu2( )
College of Science, China University of Petroleum, Qingdao 266580, China
School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, China
Show Author Information

Graphical Abstract

The synthesis of boron-doped amorphous zinc oxide with/without antimony nanoparticles embedding is firstly reported via one-step wet chemical method. This work provides advanced insights into the aimed selectivity switching for carbon dioxide reduction reaction (CO2RR) by controlling the intermediate binding capacity on active sites with favorable electronic structure.

Abstract

The adjustable intermediate binding capacity in electrocatalytic carbon dioxide (CO2) reduction is critical for varying the reaction pathways to desired products. Herein, we first report the synthesis of boron-doped amorphous zinc oxide with (B-a-ZnO-Sb) or without antimony nanoparticles embedding (B-a-ZnO) via one-step wet chemical method, which is easy to scale up by enlarging the vessel and increasing feeding. Sb successfully realizes the product switching from CO on B-a-ZnO to formate on B-a-ZnO-Sb. Both experimental and theoretical results reveal that Sb weakens the charge interaction on Zn atoms. Based on the moderate adsorption of *COOH and strong adsorption of *OCHO and *HCOOH for B-a-ZnO, the foreign Sb weakens the adsorption of these intermediates and brings about a favor formate production instead of CO. This work points out a new direction for the synthesis of amorphous ZnO-based catalysts and provides advanced insights into the aimed selectivity switch for CO2 reduction by electronic effect.

Electronic Supplementary Material

Download File(s)
12274_2023_5570_MOESM1_ESM.pdf (4.4 MB)

References

[1]

Li, W. J.; Li, L. F.; Xia, Q. N.; Hong, S.; Wang, L. J.; Yao, Z. B.; Wu, T. S.; Soo, Y. L.; Zhang, H.; Benedict Lo, T. W. et al. Lowering C–C coupling barriers for efficient electrochemical CO2 reduction to C2H4 by jointly engineering single Bi atoms and oxygen vacancies on CuO. Appl. Catal. B: Environ. 2022, 318, 121823.

[2]

Xu, D. Z.; Li, K. K.; Jia, B. H.; Sun, W. P.; Zhang, W.; Liu, X.; Ma, T. Y. Electrocatalytic CO2 reduction towards industrial applications. Carbon Energy 2023, 5, e230.

[3]

Dattila, F.; Seemakurthi, R. R.; Zhou, Y. C.; López, N. Modeling operando electrochemical CO2 reduction. Chem. Rev. 2022, 122, 11085–11130.

[4]

Zhang, Z.; Wen, G. B.; Luo, D.; Ren, B. H.; Zhu, Y. F.; Gao, R.; Dou, H. Z.; Sun, G. R.; Feng, M.; Bai, Z. Y. et al. “Two ships in a bottle” design for Zn-Ag-O catalyst enabling selective and long-lasting CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 6855–6864.

[5]

Liang, Z. F.; Wang, J. H.; Tang, P. Y.; Tang, W. Q.; Liu, L. J.; Shakouri, M.; Wang, X.; Llorca, J.; Zhao, S. L.; Heggen, M. et al. Molecular engineering to introduce carbonyl between nickel salophen active sites to enhance electrochemical CO2 reduction to methanol. Appl. Catal. B: Environ. 2022, 314, 121451.

[6]

Zhao, X. L.; Huang, M.; Deng, B. W.; Li, K.; Li, F.; Dong, F. Interfacial engineering of In2O3/InN heterostructure with promoted charge transfer for highly efficient CO2 reduction to formate. Chem. Eng. J. 2022, 437, 135114.

[7]

Chen, H. Y.; Wang, Z. J.; Wei, X. F.; Liu, S. Y.; Guo, P.; Han, P.; Wang, H. W.; Zhang, J. B.; Lu, X. Q.; Wei, B. J. Promotion of electrochemical CO2 reduction to ethylene on phosphorus-doped copper nanocrystals with stable Cuδ+ sites. Appl. Surf. Sci. 2021, 544, 148965.

[8]

Chen, H. Y.; Wang, Z. J.; Cao, S. F.; Liu, S. Y.; Lin, X. J.; Zhang, Y.; Shang, Y. Z.; Zhu, Q. Y.; Zhou, S. N.; Wei, S. X. et al. Facile synthesis of an antimony-doped Cu/Cu2O catalyst with robust CO production in a broad range of potentials for CO2 electrochemical reduction. J. Mater. Chem. A 2021, 9, 23234–23242.

[9]

Zhang, M. L.; Zhang, Z. D.; Zhao, Z. H.; Huang, H.; Anjum, D. H.; Wang, D. S.; He, J. H.; Huang, K. W. Tunable selectivity for electrochemical CO2 reduction by bimetallic Cu-Sn catalysts: Elucidating the roles of Cu and Sn. ACS Catal. 2021, 11, 11103–11108.

[10]

Chen, M. X.; Wan, S. P.; Zhong, L. X.; Liu, D. B.; Yang, H. B.; Li, C. C.; Huang, Z. Q.; Liu, C. T.; Chen, J.; Pan, H. G. et al. Dynamic restructuring of Cu-doped SnS2 nanoflowers for highly selective electrochemical CO2 reduction to formate. Angew. Chem., Int. Ed. 2021, 60, 26233–26237.

[11]

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

[12]

Meng, D. L.; Zhang, M. D.; Si, D. H.; Mao, M. J.; Hou, Y.; Huang, Y. B.; Cao, R. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts. Angew. Chem., Int. Ed. 2021, 60, 25485–25492.

[13]

Xiao, X.; Gao, J. J.; Xi, S. B.; Lim, S. H.; Png, A. K. W.; Borgna, A.; Chu, W.; Liu, Y. Experimental and in situ DRIFTs studies on confined metallic copper stabilized Pd species for enhanced CO2 reduction to formate. Appl. Catal. B: Environ. 2022, 309, 121239.

[14]

Chen, H. Y.; Zhang, Y.; Yang, T. F.; Shang, Y. Z.; Zhu, Q. Y.; Cao, S. F.; Lin, X. J.; Liu, S. Y.; Wei, S. X.; Wei, B. J. et al. Two birds with one stone: Large catalytic areas and abundant nitrogen sites inspired by fluorine doping contributing to CO2RR activity and selectivity. Dalton Trans. 2022, 51, 15883–15888.

[15]

Ayyub, M. M.; Rao, C. N. R. Borocarbonitrides as metal-free electrocatalysts for the electrochemical reduction of CO2. Chem. Mater. 2022, 34, 6626–6635.

[16]

Qiu, C.; Qian, K.; Yu, J.; Sun, M. Z.; Cao, S. F.; Gao, J. Q.; Yu, R. X.; Fang, L. Z.; Yao, Y. W.; Lu, X. Q. et al. MOF-transformed In2O3−x@C nanocorn electrocatalyst for efficient CO2 reduction to HCOOH. Nano-Micro Lett. 2022, 14, 167.

[17]

Chang, S.; Xuan, Y. M.; Duan, J. J.; Zhang, K. High-performance electroreduction CO2 to formate at Bi/Nafion interface. Appl. Catal. B: Environ. 2022, 306, 121135.

[18]

Ren, X. X.; Gao, Y. G.; Zheng, L. R.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Liu, Y. Y.; Cheng, H. F.; Dai, Y.; Huang, B. B. Oxygen vacancy enhancing CO2 electrochemical reduction to CO on Ce-doped ZnO catalysts. Surf. Interfaces 2021, 23, 100923.

[19]

Zhang, T. T.; Li, X. F.; Qiu, Y. L.; Su, P. P.; Xu, W. B.; Zhong, H. X.; Zhang, H. M. Multilayered Zn nanosheets as an electrocatalyst for efficient electrochemical reduction of CO2. J. Catal. 2018, 357, 154–162.

[20]

Han, N.; Ding, P.; He, L.; Li, Y. Y.; Li, Y. G. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 2020, 10, 1902338.

[21]

Geng, Z. G.; Kong, X. D.; Chen, W. W.; Su, H. Y.; Liu, Y.; Cai, F.; Wang, G. X.; Zeng, J. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angew. Chem., Int. Ed. 2018, 57, 6054–6059.

[22]

Xiang, Q.; Li, F.; Wang, J. L.; Chen, W. L.; Miao, Q. S.; Zhang, Q. F.; Tao, P.; Song, C. Y.; Shang, W.; Zhu, H. et al. Heterostructure of ZnO nanosheets/Zn with a highly enhanced edge surface for efficient CO2 electrochemical reduction to CO. ACS Appl. Mater. Interfaces 2021, 13, 10837–10844.

[23]

Luo, W.; Zhang, Q.; Zhang, J.; Moioli, E.; Zhao, K.; Züttel, A. Electrochemical reconstruction of ZnO for selective reduction of CO2 to CO. Appl. Catal. B: Environ. 2020, 273, 119060.

[24]

Xue, L.; Zhang, C. J.; Shi, T.; Liu, S. P.; Zhang, H.; Sun, M.; Liu, F. R.; Liu, Y.; Wang, Y.; Gu, X. J. et al. Unraveling the improved CO2 adsorption and COOH* formation over Cu-decorated ZnO nanosheets for CO2 reduction toward CO. Chem. Eng. J. 2023, 452, 139701.

[25]

Ren, B. H.; Zhang, Z.; Wen, G. B.; Zhang, X. W.; Xu, M.; Weng, Y. Y.; Nie, Y. H.; Dou, H. Z.; Jiang, Y.; Deng, Y. P. et al. Dual-scale integration design of Sn-ZnO catalyst toward efficient and stable CO2 electroreduction. Adv. Mater. 2022, 34, 2204637.

[26]

Kang, M. P. L.; Kolb, M. J.; Calle-Vallejo, F.; Yeo, B. S. The role of undercoordinated sites on zinc electrodes for CO2 reduction to CO. Adv. Funct. Mater. 2022, 32, 2111597.

[27]

Duan, Y. X.; Meng, F. L.; Liu, K. H.; Yi, S. S.; Li, S. J.; Yan, J. M.; Jiang, Q. Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic efficiencies. Adv. Mater. 2018, 30, 1706194.

[28]

Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx–RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.

[29]

Zhou, Y. S.; Che, F. L.; Liu, M.; Zou, C. Q.; Liang, Z. Q.; De Luna, P.; Yuan, H. F.; Li, J.; Wang, Z. Q.; Xie, H. P. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 2018, 10, 974–980.

[30]

Teng, X.; Lu, J. M.; Niu, Y. L.; Gong, S. Q.; Xu, M. Z.; Meyer, T. J.; Chen, Z. F. Selective CO2 reduction to formate on a Zn-based electrocatalyst promoted by tellurium. Chem. Mater. 2022, 34, 6036–6047.

[31]

Madhusudan, P.; Wang, Y.; Chandrashekar, B. N.; Wang, W. J.; Wang, J. W.; Miao, J.; Shi, R.; Liang, Y. X.; Mi, G. J.; Cheng, C. Nature inspired ZnO/ZnS nanobranch-like composites, decorated with Cu(OH)2 clusters for enhanced visible-light photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2019, 253, 379–390.

[32]

Zhang, Q. M.; Zhou, X. X.; Kuang, Z. Y.; Xue, Y.; Li, C. J.; Zhu, M.; Mou, C. Y.; Chen, H. R. A bismuth species-decorated ZnO/p-Si photocathode for high selectivity of formate in CO2 photoelectrochemical reduction. ACS Sustainable Chem. Eng. 2022, 10, 2380–2387.

[33]

Wang, X. T.; Shi, W. X.; Jin, Z.; Huang, W. F.; Lin, J.; Ma, G. S.; Li, S. Z.; Guo, L. Remarkable SERS activity observed from amorphous ZnO nanocages. Angew. Chem., Int. Ed. 2017, 56, 9851–9855.

[34]

Wang, X. Y.; Xu, K. M.; Yan, X. Y.; Xiao, X. B.; Aruta, C.; Foglietti, V.; Ning, Z. J.; Yang, N. Amorphous ZnO/PbS quantum dots heterojunction for efficient responsivity broadband photodetectors. ACS Appl. Mater. Interfaces 2020, 12, 8403–8410.

[35]

Cai, W. Z.; Chen, R.; Yang, H. B.; Tao, H. B.; Wang, H. Y.; Gao, J. J.; Liu, W.; Liu, S.; Hung, S. F.; Liu, B. Amorphous versus crystalline in water oxidation catalysis: A case study of NiFe alloy. Nano Lett. 2020, 20, 4278–4285.

[36]

Hirata, A.; Kohara, S.; Asada, T.; Arao, M.; Yogi, C.; Imai, H.; Tan, Y. W.; Fujita, T.; Chen, M. W. Atomic-scale disproportionation in amorphous silicon monoxide. Nat. Commun. 2016, 7, 11591.

[37]

Hussain, N.; Abdelkareem, M. A.; Alawadhi, H.; Begum, S.; Elsaid, K.; Olabi, A. G. Novel ternary CuO-ZnO-MoS2 composite material for electrochemical CO2 reduction to alcohols. J. Power Sources 2022, 549, 232128.

[38]

Ma, X. Y.; Du, J. J.; Sun, H.; Ye, F. H.; Wang, X.; Xu, P. F.; Hu, C. G.; Zhang, L. P.; Liu, D. Boron, nitrogen co-doped carbon with abundant mesopores for efficient CO2 electroreduction. Appl. Catal. B: Environ. 2021, 298, 120543.

[39]

Li, F. W.; Xue, M. Q.; Li, J. Z.; Ma, X. L.; Chen, L.; Zhang, X. J.; MacFarlane, D. R.; Zhang, J. Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material. Angew. Chem., Int. Ed. 2017, 56, 14718–14722.

[40]

Zhuang, T. T.; Liang, Z. Q.; Seifitokaldani, A.; Li, Y.; De Luna, P.; Burdyny, T.; Che, F. L.; Meng, F.; Min, Y.; Quintero-Bermudez, R. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 2018, 1, 421–428.

[41]

Khan, S. A.; Noreen, F.; Kanwal, S.; Iqbal, A.; Hussain, G. Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater. Sci. Eng. C 2018, 82, 46–59.

[42]

Ma, G.; Liang, X. X.; Li, L. C.; Qiao, R.; Jiang, D. H.; Ding, Y.; Chen, H. F. Cu-doped zinc oxide and its polythiophene composites: Preparation and antibacterial properties. Chemosphere 2014, 100, 146–151.

[43]

He, F.; He, Z. J.; Xie, J. L.; Li, Y. H. IR and Raman spectra properties of Bi2O3-ZnO-B2O3-BaO quaternary glass system. Am. J. Anal. Chem. 2014, 5, 1142–1150.

[44]

Wang, K.; Liu, D. Y.; Deng, P. L.; Liu, L. M.; Lu, S. Y.; Sun, Z. J.; Ma, Y. M.; Wang, Y. K.; Li, M. T.; Xia, B. Y. et al. Band alignment in Zn2SnO4/SnO2 heterostructure enabling efficient CO2 electrochemical reduction. Nano Energy 2019, 64, 103954.

[45]

Fan, Q. K.; Zhang, X.; Ge, X. H.; Bai, L. C.; He, D. S.; Qu, Y. T.; Kong, C. C.; Bi, J. L.; Ding, D. W.; Cao, Y. Q. et al. Manipulating Cu nanoparticle surface oxidation states tunes catalytic selectivity toward CH4 or C2+ products in CO2 electroreduction. Adv. Energy Mater. 2021, 11, 2101424.

[46]

Geng, Z. G.; Cao, Y. J.; Chen, W. X.; Kong, X. D.; Liu, Y.; Yao, T.; Lin, Y. Regulating the coordination environment of Co single atoms for achieving efficient electrocatalytic activity in CO2 reduction. Appl. Catal. B: Environ. 2019, 240, 234–240.

[47]

Zheng, W. Z.; Chen, F.; Zeng, Q.; Li, Z. J.; Yang, B.; Lei, L. C.; Zhang, Q. H.; He, F.; Wu, X. L.; Hou, Y. A universal principle to accurately synthesize atomically dispersed metal-N4 sites for CO2 electroreduction. Nano-Micro Lett. 2020, 12, 108.

[48]

Zhang, Y. F.; Yang, R. J.; Li, H.; Zeng, Z. Y. Boosting electrocatalytic reduction of CO2 to HCOOH on Ni single atom anchored WTe2 monolayer. Small 2022, 18, 2203759.

[49]

Guo, W. W.; Tan, X. X.; Bi, J. H.; Xu, L.; Yang, D. X.; Chen, C. J.; Zhu, Q. G.; Ma, J.; Tayal, A.; Ma, J. Y. et al. Atomic indium catalysts for switching CO2 electroreduction products from formate to CO. J. Am. Chem. Soc. 2021, 143, 6877–6885.

Nano Research
Pages 12144-12152
Cite this article:
Chen H, Cao S, Wang L, et al. Selectivity switching between CO and formate for CO2 reduction on Sb modified amorphous ZnO by electronic effect. Nano Research, 2023, 16(10): 12144-12152. https://doi.org/10.1007/s12274-023-5570-9
Topics:
Part of a topical collection:

1152

Views

8

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 04 November 2022
Revised: 08 February 2023
Accepted: 12 February 2023
Published: 15 March 2023
© Tsinghua University Press 2023
Return