AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Sulfurization accelerator coupled Fe1−xS electrocatalyst boosting SPAN cathode performance

Jinlei Qin§Yun Lu§Rui WangZhizhan LiTao ShenDeli Wang( )
Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

§ Jinlei Qin and Yun Lu contributed equally to this work.

Show Author Information

Graphical Abstract

In this strategy, the Fe1−xS/SPAN/rGO (SPAN = sulfurized polyacrylonitrile and rGO = reduced graphene oxide) cathode is proposed to increase the sulfur content, enhance the electronic conductivity, and promote Li2S nucleation/decomposition reactions. Thus, an ultra-stable cycling life of Li-S batteries over 2000 cycles is obtained.

Abstract

Sulfurized polyacrylonitrile (SPAN) cathode exhibits improved cycling stability in carbonate electrolytes due to the existent of –Sx2−– (2 ≤ n ≤ 4) units. However, it is still challenging for SPAN to achieve higher sulfur content, superior conductivity, and faster polysulfide conversion kinetics in ether electrolytes. Herein, polyacrylonitrile (PAN), 2-morpholinothiobenzothiazole (MBS), and FeCl3 coated reduced graphene oxide (rGO) were used to fabricate advanced sulfur cathode through electrospinning technology to address these problems. During PAN sulfuration reactions, the MBS with abundant unsaturated bonds served as the vulcanization accelerator to facilitate the formation of longer chain sulfur species (–S3–/–S4–) and increase the sulfur content in the SPAN electrode system. Meanwhile, Fe1−xS is in situ converted from FeCl3, which acts as the electrocatalyst to promote Li2S nucleation and decomposition reactions. As a result, the Fe1−xS/SPAN/rGO electrode with high sulfur loading of 2.0 mg·cm−2 delivers a reversible capacity of 1122 mAh·g−1 at 0.1 A·g−1. Notably, at a large current density of 5.0 A·g−1, the Fe1−xS/SPAN/rGO electrode still displays a high specific capacity of 924 mAh·g−1 with an ultra-stable cycling life over 2000 cycles. The present work provides new insights into designing of high-performance electrode materials for long-lasting Li-S batteries.

Electronic Supplementary Material

Download File(s)
12274_2023_5573_MOESM1_ESM.pdf (2.9 MB)

References

[1]

Wu, Q. P.; Zhou, X. J.; Xu, J.; Cao, F. H.; Li, C. L. Adenine derivative host with interlaced 2D structure and dual lithiophilic–sulfiphilic sites to enable high-loading Li-S batteries. ACS Nano 2019, 13, 9520–9532.

[2]

Chen, P.; Wu, Z.; Guo, T.; Zhou, Y.; Liu, M. L.; Xia, X. F.; Sun, J. W.; Lu, L. D.; Ouyang, X. P.; Wang, X. et al. Strong chemical interaction between lithium polysulfides and flame-retardant polyphosphazene for lithium-sulfur batteries with enhanced safety and electrochemical performance. Adv. Mater. 2021, 33, 2007549.

[3]

He, B.; Rao, Z. X.; Cheng, Z. X.; Liu, D. D.; He, D. Q.; Chen, J.; Miao, Z. Y.; Yuan, L. X.; Li, Z.; Huang, Y. H. Rationally design a sulfur cathode with solid-phase conversion mechanism for high cycle-stable Li-S batteries. Adv. Energy Mater. 2021, 11, 2003690.

[4]

Wang, X. W.; Yang, Y. Y. C.; Lai, C.; Li, R. L.; Xu, H. M.; Tan, D. H. S.; Zhang, K.; Yu, W.; Fjeldberg, O.; Lin, M. et al. Dense-Stacking porous conjugated polymer as reactive-type host for high-performance lithium sulfur batteries. Angew. Chem., Int. Ed. 2021, 60, 11359–11369.

[5]

Chen, Y. W.; Niu, S. Z.; Lv, W.; Zhang, C.; Yang, Q. H. Promoted conversion of polysulfides by MoO2 inlaid ordered mesoporous carbons towards high performance lithium-sulfur batteries. Chin. Chem. Lett. 2019, 30, 521–524.

[6]

Yang, Y. C.; Chen, C.; Hu, J. H.; Deng, Y. H.; Zhang, Y.; Yang, D. High performance lithium-sulfur batteries by facilely coating a conductive carbon nanotube or graphene layer. Chin. Chem. Lett. 2018, 29, 1777–1780.

[7]

Jin, Z. Q.; Liu, Y. G.; Wang, W. K.; Wang, A. B.; Hu, B. W.; Shen, M.; Gao, T.; Zhao, P. C.; Yang, Y. S. A new insight into the lithium storage mechanism of sulfurized polyacrylonitrile with no soluble intermediates. Energy Storage Mater. 2018, 14, 272–278.

[8]

Liu, J.; Wang, M. F.; Xu, N.; Qian, T.; Yan, C. L. Progress and perspective of organosulfur polymers as cathode materials for advanced lithium-sulfur batteries. Energy Storage Mater. 2018, 15, 53–64.

[9]

Wang, W. X.; Cao, Z.; Elia, G. A.; Wu, Y. Q.; Wahyudi, W.; Abou-Hamad, E.; Emwas, A. H.; Cavallo, L.; Li, L. J.; Ming, J. Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li-S batteries and beyond in Al-S batteries. ACS Energy Lett. 2018, 3, 2899–2907.

[10]

Nakano, K.; Tatsumi, G.; Nozaki, K. Synthesis of sulfur-rich polymers: Copolymerization of episulfide with carbon disulfide by using Cl/(salph)Cr(III)Cl system. J. Am. Chem. Soc. 2007, 129, 15116–15117.

[11]

Silvano, S.; Carrozza, C. F.; de Angelis, A. R.; Tritto, I.; Boggioni, L.; Losio, S. Synthesis of sulfur-rich polymers: Copolymerization of cyclohexene sulfide and carbon disulfide using chromium complexes. Macromolecules 2020, 53, 8837–8846.

[12]

Preefer, M. B.; Oschmann, B.; Hawker, C. J.; Seshadri, R.; Wudl, F. High sulfur content material with stable cycling in lithium-sulfur batteries. Angew. Chem. 2017, 129, 15314–15318.

[13]

Wu, M.; Cui, Y.; Bhargav, A.; Losovyj, Y.; Siegel, A.; Agarwal, M.; Ma, Y.; Fu, Y. Organotrisulfide: A high capacity cathode material for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2016, 55, 10027–10031.

[14]

Oschmann, B.; Park, J.; Kim, C.; Char, K.; Sung, Y. E.; Zentel, R. Copolymerization of polythiophene and sulfur to improve the electrochemical performance in lithium-sulfur batteries. Chem. Mater. 2015, 27, 7011–7017.

[15]

Wang, J.; Yang, J.; Xie, J.; Xu, N. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 2002, 14, 963–965.

[16]

Fanous, J.; Wegner, M.; Grimminger, J.; Andresen, Ä.; Buchmeiser, M. R. Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries. Chem. Mater. 2011, 23, 5024–5028.

[17]

Zhang, S. S. Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery. Energies 2014, 7, 4588–4600.

[18]

Je, S. H.; Hwang, T. H.; Talapaneni, S. N.; Buyukcakir, O.; Kim, H. J.; Yu, J. S.; Woo, S. G.; Jang, M. C.; Son, B. K.; Coskun, A. et al. Rational sulfur cathode design for lithium-sulfur batteries: Sulfur-embedded benzoxazine polymers. ACS Energy Lett. 2016, 1, 566–572.

[19]

Liu, Y. G.; Wang, W. K.; Wang, A. B.; Jin, Z. Q.; Zhao, H. L.; Yang, Y. S. A polysulfide reduction accelerator-NiS2-modified sulfurized polyacrylonitrile as a high performance cathode material for lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 22120–22124.

[20]

Chen, X.; Peng, L. F.; Wang, L. H.; Yang, J. Q.; Hao, Z. X.; Xiang, J. W.; Yuan, K.; Huang, Y. H.; Shan, B.; Yuan, L. X. et al. Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping. Nat. Commun. 2019, 10, 1021.

[21]

Sun, Z. J.; Xiao, M.; Wang, S. J.; Han, D. M.; Song, S. Q.; Chen, G. H.; Meng, Y. Z. Sulfur-rich polymeric materials with semi-interpenetrating network structure as a novel lithium-sulfur cathode. J. Mater. Chem. A 2014, 2, 9280–9286.

[22]

Li, S. P.; Han, Z. L.; Hu, W.; Peng, L. F.; Yang, J. Q.; Wang, L. H.; Zhang, Y. Y.; Shan, B.; Xie, J. Manipulating kinetics of sulfurized polyacrylonitrile with tellurium as eutectic accelerator to prevent polysulfide dissolution in lithium-sulfur battery under dissolution-deposition mechanism. Nano Energy 2019, 60, 153–161.

[23]

Hu, Y.; Li, B.; Jiao, X. X.; Zhang, C. F.; Dai, X. H.; Song, J. X. Stable cycling of phosphorus anode for sodium-ion batteries through chemical bonding with sulfurized polyacrylonitrile. Adv. Funct. Mater. 2018, 28, 1801010.

[24]

Haridas, A. K.; Heo, J.; Liu, Y.; Ahn, H. J.; Zhao, X. H.; Deng, Z.; Agostini, M.; Matic, A.; Cho, K. K.; Ahn, J. H. Boosting high energy density lithium-ion storage via the rational design of an FeS-incorporated sulfurized polyacrylonitrile fiber hybrid cathode. ACS Appl. Mater. Interfaces 2019, 11, 29924–29933.

[25]

Hong, X. D.; Liu, Y.; Li, Y.; Wang, X.; Fu, J. W.; Wang, X. L. Application progress of polyaniline, polypyrrole and polythiophene in lithium-sulfur batteries. Polymers 2020, 12, 331.

[26]

Wang, L. H.; Chen, X.; Li, S. P.; Yang, J. Q.; Sun, Y. L.; Peng, L. F.; Shan, B.; Xie, J. Effect of eutectic accelerator in selenium-doped sulfurized polyacrylonitrile for high performance room temperature sodium-sulfur batteries. J. Mater. Chem. A 2019, 7, 12732–12739.

[27]

Marykutty, C. V.; Mathew, G.; Mathew, E. J.; Thomas, S. Studies on novel binary accelerator system in sulfur vulcanization of natural rubber. J. Appl. Polym. Sci. 2003, 90, 3173–3182.

[28]

Ghosh, P.; Katare, S.; Patkar, P.; Caruthers, J. M.; Venkatasubramanian, V.; Walker, K. A. Sulfur vulcanization of natural rubber for benzothiazole accelerated formulations: From reaction mechanisms to a rational kinetic model. Rubber Chem. Technol. 2003, 76, 592–693.

[29]

Chen, H. W.; Wang, C. H.; Hu, C. J.; Zhang, J. S.; Gao, S.; Lu, W.; Chen, L. W. Vulcanization accelerator enabled sulfurized carbon materials for high capacity and high stability of lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 1392–1395.

[30]

Wang, Y.; Shuai, Y.; Chen, K. H. Diphenyl guanidine as vulcanization accelerators in sulfurized polyacrylonitrile for high performance lithium-sulfur battery. Chem. Eng. J. 2020, 388, 124378.

[31]

Wang, X. F.; Qian, Y. M.; Wang, L. N.; Yang, H.; Li, H. L.; Zhao, Y.; Liu, T. X. Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1902929.

[32]

Liu, Y.; Yang, D. Z.; Yan, W. Q.; Huang, Q. H.; Zhu, Y. S.; Fu, L. J.; Wu, Y. P. Synergy of sulfur/polyacrylonitrile composite and gel polymer electrolyte promises heat-resistant lithium-sulfur batteries. iScience 2019, 19, 316–325.

[33]

Abdul Razzaq, A.; Yuan, X. T.; Chen, Y. J.; Hu, J. P.; Mu, Q. Q.; Ma, Y.; Zhao, X. H.; Miao, L. X.; Ahn, J. H.; Peng, Y. et al. Anchoring MOF-derived CoS2 on sulfurized polyacrylonitrile nanofibers for high areal capacity lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 1298–1306.

[34]

Lu, Y.; Liang, J. N.; Hu, Y. Z.; Liu, Y.; Chen, K.; Deng, S. F.; Wang, D. L. Accurate control multiple active sites of carbonaceous anode for high performance sodium storage: Insights into capacitive contribution mechanism. Adv. Energy Mater. 2020, 10, 1903312.

[35]

Wei, S. Y.; Ma, L.; Hendrickson, K. E.; Tu, Z. Y.; Archer, L. A. Metal-sulfur battery cathodes based on PAN-sulfur composites. J. Am. Chem. Soc. 2015, 137, 12143–12152.

[36]

Ye, H.; Lei, D. N.; Shen, L.; Ni, B.; Li, B. H.; Kang, F. Y.; He, Y. B. In-situ polymerized cross-linked binder for cathode in lithium-sulfur batteries. Chin. Chem. Lett. 2020, 31, 570–574.

[37]

Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.

[38]

Boyjoo, Y.; Shi, H. D.; Olsson, E.; Cai, Q.; Wu, Z. S.; Liu, J.; Lu, G. Q. Molecular-level design of pyrrhotite electrocatalyst decorated hierarchical porous carbon spheres as nanoreactors for lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2000651.

[39]

Lu, Y.; Qin, J. L.; Shen, T.; Yu, Y. F.; Chen, K.; Hu, Y. Z.; Liang, J. N.; Gong, M. X.; Zhang, J. J.; Wang, D. L. Hypercrosslinked polymerization enabled N-doped carbon confined Fe2O3 facilitating Li polysulfides interface conversion for Li-S batteries. Adv. Energy Mater. 2021, 11, 2101780.

[40]

Lu, Y.; Liang, J. N.; Deng, S. F.; He, Q. M.; Deng, S. Y.; Hu, Y. Z.; Wang, D. L. Hypercrosslinked polymers enabled micropore-dominant N, S co-doped porous carbon for ultrafast electron/ion transport supercapacitors. Nano Energy 2019, 65, 103993.

[41]

Deiss, E. Spurious chemical diffusion coefficients of Li+ in electrode materials evaluated with GITT. Electrochim. Acta 2005, 50, 2927–2932.

[42]

Liang, J. N.; Lu, Y.; Wang, J.; Liu, X. P.; Chen, K.; Ji, W. H.; Zhu, Y.; Wang, D. L. Well-ordered layered LiNi0.8Co0.1Mn0.1O2 submicron sphere with fast electrochemical kinetics for cathodic lithium storage. J. Energy Chem. 2020, 47, 188–195.

[43]

Wang, G.; Shao, M.; Ding, H. R.; Qi, Y.; Lian, J. B.; Li, S.; Qiu, J. X.; Li, H. M.; Huo, F. W. Multiple active sites of carbon for high-rate surface-capacitive sodium-ion storage. Angew. Chem., Int. Ed. 2019, 58, 13584–13589.

[44]

Wang, Y.; Wang, G. X.; He, P. G.; Hu, J. K.; Jiang, J. H.; Fan, L. Z. Sandwich structured NASICON-type electrolyte matched with sulfurized polyacrylonitrile cathode for high performance solid-state lithium-sulfur batteries. Chem. Eng. J. 2020, 393, 124705.

[45]

Lu, Y.; He, C. E.; Gao, P. Y.; Qiu, S. Q.; Han, X. Y.; Shi, D. A.; Zhang, A. Q.; Yang, Y. K. Simultaneous polymerization enabled the facile fabrication of S-doped carbons with tunable mesoporosity for high-capacitance supercapacitors. J. Mater. Chem. A 2017, 5, 23513–23522.

Nano Research
Pages 9231-9239
Cite this article:
Qin J, Lu Y, Wang R, et al. Sulfurization accelerator coupled Fe1−xS electrocatalyst boosting SPAN cathode performance. Nano Research, 2023, 16(7): 9231-9239. https://doi.org/10.1007/s12274-023-5573-6
Topics:

909

Views

4

Crossref

4

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 28 November 2022
Revised: 13 February 2023
Accepted: 13 February 2023
Published: 26 June 2023
© Tsinghua University Press 2023
Return