AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Interface engineering of NiSe2 nanowrinkles/Ni5P4 nanorods for boosting urea oxidation reaction at large current densities

Jinyang Li1Xiujuan Xu1Xianbiao Hou1Shucong Zhang1Ge Su1Weiqian Tian1Huanlei Wang1Minghua Huang1( )Arafat Toghan2,3
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt
Show Author Information

Graphical Abstract

In this work, we report the coupled NiSe2 nanowrinkles with Ni5P4 nanorods heterogeneous structure onto Ni foam (denoted as NiSe2@Ni5P4/NF) through successive phosphorization and selenization strategy, in which the produced closely contacted interface could provide high-flux electron transfer pathways. Benefiting from the unique heterostructure with abundant interfaces and the synergistic effect between Ni5P4 and NiSe2, the obtained NiSe2@Ni5P4/NF can deliver the current density of 100 and 500 mA·cm−2 with a small Tafel slope of 27.6 mV·dec−1 only at a low potential of 1.345 and 1.402 V, respectively, and also exhibit an extraordinary long-term stability over 950 h at the current density of 100 mA·cm−2.

Abstract

Deliberate modulation of the electronic structure via interface engineering is one of promising perspectives to build advanced catalysts for urea oxidation reaction (UOR) at high current densities. However, it still remains some challenges originating from the intrinsically sluggish UOR dynamics and the high energy barrier for urea adsorption. In response, we report the coupled NiSe2 nanowrinkles with Ni5P4 nanorods heterogeneous structure onto Ni foam (denoted as NiSe2@Ni5P4/NF) through successive phosphorization and selenization strategy, in which the produced closely contacted interface could provide high-flux electron transfer pathways. Theoretical findings decipher that the fast charge transfer takes place at the interfacial region from Ni5P4 to NiSe2, which is conducive to optimizing adsorption energy of urea molecules. As expected, the well-designed NiSe2@Ni5P4/NF only requires the low potential of 1.402 V at the current density of 500 mA·cm−2. More importantly, a small Tafel slope of 27.6 mV·dec−1, a high turnover frequency (TOF) value of 1.037 s−1 as well as the prolonged stability of 950 h at the current density of 100 mA·cm−2 are also achieved. This study enriches the understanding on the electronic structure modulation via interface engineering and offers bright prospect to design advanced UOR catalysts.

Electronic Supplementary Material

Download File(s)
12274_2023_5575_MOESM1_ESM.pdf (4.2 MB)

References

[1]

Rausch, B.; Symes, M. D.; Chisholm, G.; Cronin, L. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 2014, 345, 1326–1330.

[2]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[3]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 134, e202213318.

[4]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[5]

Wang, C. D.; Tian, Y. F.; Gu, Y.; Xue, K. H.; Sun, H. C.; Miao, X. S.; Dai, L. M. Plasma-induced moieties impart super-efficient activity to hydrogen evolution electrocatalysts. Nano Energy 2021, 85, 106030.

[6]

Tang, C.; Zhang, R.; Lu, W. B.; Wang, Z.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 842–846.

[7]

Ding, W. L.; Cao, Y. H.; Liu, H.; Wang, A. X.; Zhang, C. J.; Zheng, X. R. In situ growth of NiSe@Co0.85Se heterointerface structure with electronic modulation on nickel foam for overall water splitting. Rare Metals 2020, 40, 1373–1382.

[8]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[9]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 134, e202205946.

[10]

Chen, B. J.; Humayun, M.; Li, Y. D.; Zhang, H. M.; Sun, H. C.; Wu, Y.; Wang, C. D. Constructing hierarchical fluffy CoO-Co4N@NiFe-LDH nanorod arrays for highly effective overall water splitting and urea electrolysis. ACS Sustainable Chem. Eng. 2021, 9, 14180–14192.

[11]

Xiang, K.; Wu, D.; Deng, X. H.; Li, M.; Chen, S. Y.; Hao, P. P.; Guo, X. F.; Luo, J. L.; Fu, X. Z. Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts. Adv. Funct. Mater. 2020, 30, 1909610.

[12]

Ding, Y.; Xue, Q.; Hong, Q. L.; Li, F. M.; Jiang, Y. C.; Li, S. N.; Chen, Y. Hydrogen and potassium acetate co-production from electrochemical reforming of ethanol at ultrathin cobalt sulfide nanosheets on nickel foam. ACS Appl. Mater. Interfaces 2021, 13, 4026–4033.

[13]

Han, X. T.; Sheng, H. Y.; Yu, C.; Walker, T. W.; Huber, G. W.; Qiu, J. S.; Jin, S. Electrocatalytic oxidation of glycerol to formic acid by CuCo2O4 spinel oxide nanostructure catalysts. ACS Catal. 2020, 10, 6741–6752.

[14]

Li, J. X.; Wang, S. L.; Chang, J. F.; Feng, L. G. A review of Ni based powder catalyst for urea oxidation in assisting water splitting reaction. Adv. Powder Mater. 2022, 1, 100030.

[15]

Xu, X. J.; Hou, X. B.; Du, P. Y.; Zhang, C. H.; Zhang, S. C.; Wang, H. L.; Toghan, A.; Huang, M. H. Controllable Ni/NiO interface engineering on N-doped carbon spheres for boosted alkaline water-to-hydrogen conversion by urea electrolysis. Nano Res. 2022, 15, 7124–7133.

[16]

Choi, S.; Balamurugan, M.; Lee, K. G.; Cho, K. H.; Park, S.; Seo, H.; Nam, K. T. Mechanistic investigation of biomass oxidation using nickel oxide nanoparticles in a CO2-saturated electrolyte for paired electrolysis. J. Phys. Chem. Lett. 2020, 11, 2941–2948.

[17]

Lu, X. F.; Zhang, S. L.; Sim, W. L.; Gao, S. Y.; Lou, X. W. Phosphorized CoNi2S4 yolk–shell spheres for highly efficient hydrogen production via water and urea electrolysis. Angew. Chem., Int. Ed. 2021, 60, 22885–22891.

[18]

Xu, X. J.; Li, J. Y.; Zhang, C. H.; Zhang, S. C.; Su, G.; Shi, Z. C.; Wang, H. L.; Huang, M. H. Controllable transition engineering from homogeneous NiSe2 nanowrinkles to heterogeneous Ni3Se4/NiSe2 rod-like nanoarrays for promoted urea-rich water oxidation at large current densities. Appl. Catal. B 2022, 319, 121949.

[19]

Babar, P.; Lokhande, A.; Karade, V.; Pawar, B.; Gang, M. G.; Pawar, S.; Kim, J. H. Bifunctional 2D electrocatalysts of transition metal hydroxide nanosheet arrays for water splitting and urea electrolysis. ACS Sustainable Chem. Eng. 2019, 7, 10035–10043.

[20]

Yang, W. L.; Yang, X. P.; Li, B. J.; Lin, J. H.; Gao, H. T.; Hou, C. M.; Luo, X. L. Ultrathin nickel hydroxide nanosheets with a porous structure for efficient electrocatalytic urea oxidation. J. Mater. Chem. A 2019, 7, 26364–26370.

[21]

Xiao, J.; Lv, Q. Y.; Zhang, Y.; Zhang, Z. Y.; Wang, S. One-step synthesis of nickel phosphide nanowire array supported on nickel foam with enhanced electrocatalytic water splitting performance. RSC Adv. 2016, 6, 107859–107864.

[22]

Xu, X. J.; Du, P. Y.; Guo, T.; Zhao, B. L.; Wang, H. L.; Huang, M. H. In situ grown Ni phosphate@Ni12P5 nanorod arrays as a unique core–shell architecture: Competitive bifunctional electrocatalysts for urea electrolysis at large current densities. ACS Sustainable Chem. Eng. 2020, 8, 7463–7471.

[23]

You, B.; Liu, X.; Jiang, N.; Sun, Y. J. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 2016, 138, 13639–13646.

[24]

Zhu, W. X.; Ren, M. R.; Hu, N.; Zhang, W. T.; Luo, Z. T.; Wang, R.; Wang, J.; Huang, L. J.; Suo, Y. R.; Wang, J. L. Traditional NiCo2S4 phase with porous nanosheets array topology on carbon cloth: A flexible, versatile and fabulous electrocatalyst for overall water and urea electrolysis. ACS Sustainable Chem. Eng. 2018, 6, 5011–5020.

[25]

Qian, Q. Z.; Zhang, J. H.; Li, J. M.; Li, Y. P.; Jin, X.; Zhu, Y.; Liu, Y.; Li, Z. Y.; El-Harairy, A.; Xiao, C. et al. Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem., Int. Ed. 2021, 60, 5984–5993.

[26]

Liu, Q.; Xie, L. S.; Qu, F. L.; Liu, Z. A.; Du, G.; Asiri, A. M.; Sun, X. P. A porous Ni3N nanosheet array as a high-performance non-noble-metal catalyst for urea-assisted electrochemical hydrogen production. Inorg. Chem. Front. 2017, 4, 1120–1124.

[27]

Zhu, D. D.; Guo, C. X.; Liu, J. L.; Wang, L.; Du, Y.; Qiao, S. Z. Two-dimensional metal-organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Chem. Commun. 2017, 53, 10906–10909.

[28]

Xu, Y.; Chai, X. J.; Ren, T. L.; Yu, S. S.; Yu, H. J.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Ir-doped Ni-based metal-organic framework ultrathin nanosheets on Ni foam for enhanced urea electro-oxidation. Chem. Commun. 2020, 56, 2151–2154.

[29]

Xu, X. F.; Deng, Q. M.; Chen, H. C.; Humayun, M.; Duan, D. L.; Zhang, X.; Sun, H. C.; Ao, X.; Xue, X. Y.; Nikiforov, A. et al. Metal-organic frameworks offering tunable binary active sites toward highly efficient urea oxidation electrolysis. Research 2022, 2022, 9837109.

[30]

Peng, X.; Yan, Y. J.; Jin, X.; Huang, C.; Jin, W. H.; Gao, B.; Chu, P. K. Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 2020, 78, 105234.

[31]

Li, M.; Feng, L. G. NiSe2-CoSe2 with a hybrid nanorods and nanoparticles structure for efficient oxygen evolution reaction. Chin. J. Struct. Chem. 2022, 41, 2201019–2201024.

[32]

Xia, X. Y.; Wang, L. J.; Sui, N.; Colvin, V. L.; Yu, W. W. Recent progress in transition metal selenide electrocatalysts for water splitting. Nanoscale 2020, 12, 12249–12262.

[33]

Feng, W. S.; Bu, M. M.; Kan, S. T.; Gao, X. H.; Guo, A. M.; Liu, H. T.; Deng, L. W.; Chen, W. Interfacial hetero-phase construction in nickel/molybdenum selenide hybrids to promote the water splitting performance. Appl. Mater. Today 2021, 25, 101175.

[34]

Liu, Z.; Xue, S. J.; Zhou, S. F.; Li, J.; Qu, K. G.; Cai, W. W. Mutual promotion effect of Ni and Mo2C encapsulated in N-doped porous carbon on bifunctional overall urea oxidation catalysis. J. Catal. 2022, 405, 606–613.

[35]

Han, W. K.; Wei, J. X.; Xiao, K.; Ouyang, T.; Peng, X. W.; Zhao, S. L.; Liu, Z. Q. Activating lattice oxygen in layered lithium oxides through cation vacancies for enhanced urea electrolysis. Angew. Chem., Int. Ed. 2022, 61, e202206050.

[36]

Xu, X.; Ji, S.; Wang, H.; Wang, X. Y.; Linkov, V.; Wang, R. F. Porous hetero-structured nickel oxide/nickel phosphide nanosheets as bifunctional electrocatalyst for hydrogen production via urea electrolysis. J. Colloid Interface Sci. 2022, 615, 163–172.

[37]

Yuan, W. Z.; Jiang, T. F.; Fang, X. Q.; Fan, Y.; Qian, S.; Gao, Y. Y.; Cheng, N. Y.; Xue, H. G.; Tian, J. Q. Interface engineering of S-doped Co2P@Ni2P core–shell heterostructures for efficient and energy-saving water splitting. Chem. Eng. J. 2022, 439, 135743.

[38]

Ni, S.; Qu, H. N.; Xu, Z. H.; Zhu, X. Y.; Xing, H. F.; Wang, L.; Yu, J. M.; Liu, H. Z.; Chen, C. M.; Yang, L. R. Interfacial engineering of the NiSe2/FeSe2 p-p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation. Appl. Catal. B 2021, 299, 120638.

[39]

Qin, M. L.; Chen, L. L.; Zhang, H. M.; Humayun, M.; Fu, Y. J.; Xu, X. F.; Xue, X. Y.; Wang, C. D. Achieving highly efficient pH-universal hydrogen evolution by Mott–Schottky heterojunction of Co2P/Co4N. Chem. Eng. J. 2023, 454, 140230.

[40]

Tang, C.; Zhao, Z. L.; Chen, J.; Li, B.; Chen, L.; Li, C. M. Se-Ni(OH)2-shelled vertically oriented NiSe nanowires as a superior electrocatalyst toward urea oxidation reaction of fuel cells. Electrochim. Acta 2017, 248, 243–249.

[41]

Liu, Z.; Zhang, C. Z.; Liu, H.; Feng, L. G. Efficient synergism of NiSe2 nanoparticle/NiO nanosheet for energy-relevant water and urea electrocatalysis. Appl. Catal. B 2020, 276, 119165.

[42]

Guo, T.; Xu, X. J.; Wang, X. K.; Zhou, J.; Wang, H. L.; Shi, Z. C.; Huang, M. H. Enabling the full exposure of Fe2P@NixP heterostructures in tree-branch-like nanoarrays for promoted urea electrolysis at high current densities. Chem. Eng. J. 2021, 417, 128067.

[43]

Li, Y.; Dong, Z. H.; Jiao, L. F. Multifunctional transition metal-based phosphides in energy-related electrocatalysis. Adv. Energy Mater. 2020, 10, 1902104.

[44]

Jiang, L. W.; Yang, N.; Yang, C. X.; Zhu, X. Y.; Jiang, Y. N.; Shen, X. P.; Li, C. C.; Sun, Q. F. Surface wettability engineering: CoSx-Ni3S2 nanoarray electrode for improving overall water splitting. Appl. Catal. B 2020, 269, 118780.

[45]

Wang, H. W.; Li, Y. J.; Wang, R.; He, B. B.; Gong, Y. S. Metal-organic-framework template-derived hierarchical porous CoP arrays for energy-saving overall water splitting. Electrochim. Acta 2018, 284, 504–512.

[46]

Wang, Z. Y.; Xu, L.; Huang, F. Z.; Qu, L. B.; Li, J. T.; Owusu, K. A.; Liu, Z. A.; Lin, Z. F.; Xiang, B. H.; Liu, X. et al. Copper-nickel nitride nanosheets as efficient bifunctional catalysts for hydrazine-assisted electrolytic hydrogen production. Adv. Energy Mater. 2019, 9, 1900390.

[47]

Wei, C.; Sun, Y. M.; Scherer, G. G.; Fisher, A. C.; Sherburne, M.; Ager, J. W.; Xu, Z. J. Surface composition dependent ligand effect in tuning the activity of nickel-copper bimetallic electrocatalysts toward hydrogen evolution in alkaline. J. Am. Chem. Soc. 2020, 142, 7765–7775.

[48]

Zhou, J.; Han, Z. K.; Wang, X. K.; Gai, H. Y.; Chen, Z. K.; Guo, T.; Hou, X. B.; Xu, L. L.; Hu, X. J.; Huang, M. H. et al. Discovery of quantitative electronic structure–OER activity relationship in metal-organic framework electrocatalysts using an integrated theoretical-experimental approach. Adv. Funct. Mater. 2021, 31, 2102066.

[49]

Yang, Y. M.; Ji, Y. J.; Li, G. Y.; Li, Y. Y.; Jia, B. H.; Yan, J. Q.; Ma, T. Y.; Liu, S. Z. IrOx@In2O3 heterojunction from individually crystallized oxides for weak-light-promoted electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2021, 60, 26790–26797.

[50]

Tong, M. M.; Yu, P.; Xie, Y.; Wang, L.; Wang, Y.; Fu, H. G. Atomically dispersed Fe-N3C sites induce asymmetric electron structures to afford superior oxygen reduction activity. Small 2022, 18, 2201255.

[51]
Wang, Z. L.; Hu, Y. M.; Liu, W. J.; Xu, L.; Guan, M. L.; Zhao, Y.; Bao, J.; Li, H. M. Manganese-modulated cobalt-based layered double hydroxide grown on nickel foam with 1D-2D-3D heterostructure for highly efficient oxygen evolution reaction and urea oxidation reaction. Chem. -Eur. J. 2020, 26, 9382–9388.
[52]

Li, B. L.; Li, Z. S.; Pang, Q.; Zhang, J. Z. Core/shell cable-like Ni3S2 nanowires/N-doped graphene-like carbon layers as composite electrocatalyst for overall electrocatalytic water splitting. Chem. Eng. J. 2020, 401, 126045.

[53]

Wang, Z. L.; Liu, W. J.; Hu, Y. M.; Guan, M. L.; Xu, L.; Li, H. P.; Bao, J.; Li, H. M. Cr-doped CoFe layered double hydroxides: Highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Appl. Catal. B 2020, 272, 118959.

Nano Research
Pages 8853-8862
Cite this article:
Li J, Xu X, Hou X, et al. Interface engineering of NiSe2 nanowrinkles/Ni5P4 nanorods for boosting urea oxidation reaction at large current densities. Nano Research, 2023, 16(7): 8853-8862. https://doi.org/10.1007/s12274-023-5575-4
Topics:

895

Views

18

Crossref

10

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 28 December 2022
Revised: 11 February 2023
Accepted: 13 February 2023
Published: 07 March 2023
© Tsinghua University Press 2023
Return