AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hydrogel-based optically and mechanically manipulable broadband microwave absorber

Xiqiao Chen1,2Lin Du2Guobao Jiang1Zhuang Wu2Yingchang Zou1Yanhong Zou2( )
School of Electronic Information and Electrical Engineering, Changsha University, Changsha 410022, China
School of Physics and Electronics, Hunan University, Changsha 410082, China
Show Author Information

Graphical Abstract

The hydorgel-based microwave absorber enables effective absorption bandwidth covering 6.3–18 GHz, and exhibits switchable optical and mechanical properties through the transition from room-temperature to frozen condition.

Abstract

Microwave absorbers with unique optical and mechanical performance are urgent for complex electromagnetic environment. Here, we demonstrate the mechanically flexible, optically transparent, and microwave-absorbing polyacrylamide (PAM) hydrogel, in which the polar water molecules with high polarization contribute to the efficient microwave attenuation, but the binding between water molecules and PAM will slow down the orientation polarization of polar molecules. Meanwhile, the dominated dielectric property of water molecules in PAM hydrogel determines that the molecules displacement in polymer mixture is feasible for manipulating permittivity. Besides, by decreasing temperature, the flexible and transparent hydrogel will switch to rigid and opaque state as the phase conversion between amorphous and polycrystal state. By constructing structures with such hydrogel, the obtained absorber also exhibits the optical and mechanical switchable properties, covering the effective absorption within 5.7–18 GHz. This work provides an effective method to fabricate optically and mechanically manipulable microwave absorbers for intelligent electromagnetic stealth systems.

References

[1]

Wang, Y. C.; Yao, L. H.; Zheng, Q.; Cao, M. S. Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding. Nano Res. 2022, 15, 6751–6760.

[2]

Wang, F.; Gu, W. H.; Chen, J. B.; Wu, Y.; Zhou, M.; Tang, S. L.; Cao, X. Z.; Zhang, P.; Ji, G. B. The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability. Nano Res. 2022, 15, 3720–3728.

[3]

Wang, X. Y.; Liao, S. Y.; Wan, Y. J.; Zhu, P. L.; Hu, Y. G.; Zhao, T.; Sun, R.; Wong, C. P. Electromagnetic interference shielding materials: Recent progress, structure design, and future perspective. J. Mater. Chem. C 2022, 10, 44–72.

[4]

Qiu, Y.; Lin, Y.; Yang, H. B.; Wang, L.; Wang, M. Q.; Wen, B. Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123207.

[5]

Wen, B.; Yang, H. B.; Lin, Y.; Qiu, Y.; Cheng, Y.; Jin, L. X. Novel bimetallic MOF derived hierarchical Co@C composites modified with carbon nanotubes and its excellent electromagnetic wave absorption properties. J. Colloid Interf. Sci. 2022, 605, 657–666.

[6]

Qiu, Y.; Yang, H. B.; Cheng, Y.; Wen, B.; Lin, Y. Structure design of Prussian blue analogue derived CoFe@C composite with tunable microwave absorption performance. Appl. Surf. Sci. 2022, 571, 151334.

[7]

Sun, H. D.; Zhang, Y.; Wu, Y.; Li, C.; Wei, G. K.; Wang, J. W.; Liu, L.; Tang, S. L.; Ji, G. B. Broadband and high-efficiency microwave absorbers based on pyramid structure. ACS Appl. Mater. Interfaces 2022, 14, 52182–52192.

[8]

Wu, Y. H.; Wang, G. D.; Yuan, X. X.; Fang, G.; Li, P.; Ji, G. B. Heterointerface engineering in hierarchical assembly of the Co/Co(OH)2@carbon nanosheets composites for wideband microwave absorption. Nano Res. 2023, 16, 2611–2621.

[9]

Gu, W. H.; Ong, S. J. H.; Shen, Y. H.; Guo, W. Y.; Fang, Y. T.; Ji, G. B.; Xu, Z. J. A lightweight, elastic, and thermally insulating stealth foam with high infrared-radar compatibility. Adv. Sci. 2022, 9, 2204165.

[10]

Wu, Y.; Zhao, Y.; Zhou, M.; Tan, S. J.; Peymanfar, R.; Aslibeiki, B.; Ji, G. B. Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 2022, 14, 171.

[11]

Chen, X. Q.; Li, W.; Wu, Z.; Zhang, Z. L.; Zou, Y. H. Origami-based microwave absorber with a reconfigurable bandwidth. Opt. Lett. 2021, 46, 1349–1352.

[12]

Zhou, Q.; Yin, X. W.; Ye, F.; Liu, X. F.; Cheng, L. F.; Zhang, L. T. A novel two-layer periodic stepped structure for effective broadband radar electromagnetic absorption. Mater. Des. 2017, 123, 46–53.

[13]

Huang, Y. X.; Yuan, X. J.; Wang, C. X.; Chen, M. J.; Tang, L. Q.; Fang, D. N. Flexible thin broadband microwave absorber based on a pyramidal periodic structure of lossy composite. Opt. Lett. 2018, 43, 2764–2767.

[14]

Li, W.; Chen, X. Q.; Zhang, Z. L.; Wu, Z.; Yang, L.; Zou, Y. H. Ultralight and low-cost structural absorbers with enhanced microwave absorption performance based on sustainable waste biomass. IEEE Trans. Antenn. Propag. 2022, 70, 401–409.

[15]

Wang, C. X.; Chen, M. J.; Lei, H. S.; Yao, K.; Li, H. M.; Wen, W. B.; Fang, D. N. Radar stealth and mechanical properties of a broadband radar absorbing structure. Compos. Part B Eng. 2017, 123, 19–27.

[16]

Song, W. L.; Zhou, Z. L.; Wang, L. C.; Cheng, X. D.; Chen, M. J.; He, R. J.; Chen, H. S.; Yang, Y. Z.; Fang, D. N. Constructing repairable meta-structures of ultra-broad-band electromagnetic absorption from three-dimensional printed patterned shells. ACS Appl. Mater. Interfaces 2017, 9, 43179–43187.

[17]

Wang, H. Y.; Zhang, Y. L.; Ji, C. G.; Zhang, C.; Liu, D.; Zhang, Z.; Lu, Z. G.; Tan, J. B.; Guo, L. J. Transparent perfect microwave absorber employing asymmetric resonance cavity. Adv. Sci. 2019, 6, 1901320.

[18]

Jang, T.; Youn, H.; Shin, Y. J.; Guo, L. J. Transparent and flexible polarization-independent microwave broadband absorber. ACS Photonics 2014, 1, 279–284.

[19]

Huang, Y. X.; Yuan, X. J.; Chen, M. J.; Song, W. L.; Chen, J.; Fan, Q. F.; Tang, L. Q.; Fang, D. N. Ultrathin multifunctional carbon/glass fiber reinforced lossy lattice metastructure for integrated design of broadband microwave absorption and effective load bearing. Carbon 2019, 144, 449–456.

[20]

Zheng, Y. L.; Chen, K.; Jiang, T.; Zhao, J. M.; Feng, Y. J. Multi-octave microwave absorption via conformal metamaterial absorber with optical transparency. J. Phys. D Appl. Phys. 2019, 52, 335101.

[21]

Zhang, Y. Q.; Dong, H. X.; Mou, N. L.; Li, H. N.; Yao, X.; Zhang, L. Tunable and transparent broadband metamaterial absorber with water-based substrate for optical window applications. Nanoscale 2021, 13, 7831–7837.

[22]

Song, W. L.; Zhang, Y. J.; Zhang, K. L.; Wang, K.; Zhang, L.; Chen, L. L.; Huang, Y. X.; Chen, M. J.; Lei, H. S.; Chen, H. S. et al. Ionic conductive gels for optically manipulatable microwave stealth structures. Adv. Sci. 2020, 7, 1902162.

[23]

Zhang, K. L.; Cheng, X. D.; Zhang, Y. J.; Chen, M. J.; Chen, H. S.; Yang, Y. Z.; Song, W. L. Fang, D. N. Weather-manipulated smart broadband electromagnetic metamaterials. ACS Appl. Mater. Interfaces 2018, 10, 40815–40823.

[24]

Li, W. W.; Zhao, L. Y.; Dai, Z. H.; Jin, H.; Duan, F.; Liu, J. C.; Zeng, Z. H.; Zhao, J.; Zhang, Z. A temperature-activated nanocomposite metamaterial absorber with a wide tunability. Nano Res. 2018, 11, 3931–3942.

[25]

Wei, H.; Gu, J. X.; Ren, F. F.; Zhang, L. P.; Xu, G. P.; Wang, B.; Song, S. S.; Zhao, J. P.; Dou, S. L.; Li, Y. Smart materials for dynamic thermal radiation regulation. Small 2021, 17, 2100446.

[26]

das Mahapatra, S.; Mohapatra, P. C.; Aria, A. I.; Christie, G.; Mishra, Y. K.; Hofmann, S.; Thakur, V. K. Piezoelectric materials for energy harvesting and sensing applications: Roadmap for future smart materials. Adv. Sci. 2021, 8, 2100864.

[27]

McConville, P.; Pope, J. M. A comparison of water binding and mobility in contact lens hydrogels from NMR measurements of the water self-diffusion coefficient. Polymer 2000, 41, 9081–9088.

[28]

McConville, P.; Pope, J. M. 1H NMR T2 relaxation in contact lens hydrogels as a probe of water mobility. Polymer 2021, 42, 3559–3568.

[29]

Yeow, Y. K.; Abbas, Z.; Khalid, K.; Rahman, M. Z. A. Improved dielectric model for polyvinyl alcohol-water hydrogel at microwave frequencies. Am. J. Appl. Sci. 2010, 7, 270–276.

[30]

Wang, Y. N.; Cheng, X. D.; Song, W. L.; Ma, C. J.; Bian, X. M.; Chen, M. J. Hydro-sensitive sandwich structures for self-tunable smart electromagnetic shielding. Chem. Eng. J. 2018, 344, 342–352.

[31]

Chai, L.; Wang, Y. Q.; Zhou, N. F.; Du, Y.; Zeng, X. D.; Zhou, S. Y.; He, Q. C.; Wu, G. L. In-situ growth of core–shell ZnFe2O4@porous hollow carbon microspheres as an efficient microwave absorber. J. Colloid Interf. Sci. 2021, 581, 475–484.

[32]

Yokozeki, T.; Shimizu, Y.; Ishii, M.; Kimizuka, K.; Suzuki, S.; Yamasaki, Y.; Terashima, K.; Kamita, T.; Aoki, T. Mechanical behavior in compression of skin-added X-lattice composite panel with corrugated ribs. Compos. Struct. 2017, 168, 863–871.

[33]

Yang, L.; Fan, H. L.; Liu, J.; Ma, Y.; Zheng, Q. Hybrid lattice-core sandwich composites designed for microwave absorption. Mater. Des. 2013, 50, 863–871.

[34]

Jiang, S.; Sun, F. F.; Zhang, X. R.; Fan, H. L. Interlocking orthogrid: An efficient way to construct lightweight lattice-core sandwich composite structure. Compos. Struct. 2017, 176, 55–71.

[35]

Li, W.; Wu, T. L.; Wang, W.; Zhai, P. C.; Guan, J. G. Broadband patterned magnetic microwave absorber. J. Appl. Phys. 2014, 116, 04411.

Nano Research
Pages 10175-10182
Cite this article:
Chen X, Du L, Jiang G, et al. Hydrogel-based optically and mechanically manipulable broadband microwave absorber. Nano Research, 2023, 16(7): 10175-10182. https://doi.org/10.1007/s12274-023-5579-0
Topics:

839

Views

6

Crossref

7

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 02 December 2022
Revised: 25 January 2023
Accepted: 12 February 2023
Published: 13 April 2023
© Tsinghua University Press 2023
Return