AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Immunogenic cell death effects induced by doxorubicin improved chemo-immunotherapy via restoration of granzyme B activity

Tao Huang1,§Xiaofan Sun1,§Yingqiu Qi1,2,§Xi Yang1Linyao Fan1Mengdie Chen2Yale Yue2Hong Ge3Yiye Li4Guangjun Nie4( )Huan Min1,2( )Xianfu Sun1( )
Department of Breast Disease, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450008, China
Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450003, China
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China

§ Tao Huang, Xiaofan Sun, and Yingqiu Qi contributed equally to this work.

Show Author Information

Graphical Abstract

A doxorubicin (DOX) and 3034 co-loaded tumor targeting nanomedicne, DOX-3034-RGD-Lipo (D3RL, RGD: Arg-Gly-Asp) has developed for the chemo-immunotherapy for breast cancer through targeting increasing the production of granzyme B (GrB) with immunogenic cell death (ICD) effect and enhancing the restoration of GrB with 3034.

Abstract

Chemotherapy remains one of the irreplaceable treatments for cancer therapy. The use of immunogenic cell death (ICD)-inducing chemotherapeutic drugs offers a practical strategy for killing cancer cells, simultaneously eliciting an antitumor immune response by promoting the recruitment of cytotoxic immune cells and production of granzyme B (GrB). However, numerous malignant cancers adaptively acquired the capacity of secreting serpinb9 (Sb9), a physiological inhibitor of GrB, which can reversibly inhibit the biological activity of GrB. To circumvent this dilemma, in this study, an integrated tailor-made nanomedicine composed of tumor-targeting peptide (Arg-Gly-Asp, RGD) decorated liposome, doxorubicin (DOX, an effective ICD inducer), and the compound 3034 (an inhibitor of Sb9), is developed (termed as D3RL) for breast cancer chemo-immunotherapy. In vitro and in vivo studies show that D3RL can directly kill tumor cells and trigger the host immune response by inducing ICD. Meanwhile, D3RL can competitively relieve the inhibition of Sb9 to GrB. The restored GrB can not only effectively induce tumor immunotherapy, but also degrade matrix components in the tumor microenvironment, consequently improving the infiltration of immune cells and the penetration of nanomedicines, which in return enhance the combined antitumor effect. Taken together, this work develops an integrated therapeutic solution for targeted production and restoration of GrB to achieve a combined chemo-immunotherapy for breast cancer.

Electronic Supplementary Material

Download File(s)
12274_2023_5581_MOESM1_ESM.pdf (3.9 MB)

References

[1]

Giaquinto, A. N.; Sung, H.; Miller, K. D.; Kramer, J. L.; Newman, L. A.; Minihan, A.; Jemal, A.; Siegel, R. L. Breast cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 524–541.

[2]

Kroemer, G.; Senovilla, L.; Galluzzi, L.; André, F.; Zitvogel, L. Natural and therapy-induced immunosurveillance in breast cancer. Nat. Med. 2015, 21, 1128–1138.

[3]

Barnestein, R.; Galland, L.; Kalfeist, L.; Ghiringhelli, F.; Ladoire, S.; Limagne, E. Immunosuppressive tumor microenvironment modulation by chemotherapies and targeted therapies to enhance immunotherapy effectiveness. OncoImmunology 2022, 11, 2120676.

[4]

Wen, Y. Y.; Chen, X.; Zhu, X. F.; Gong, Y. C.; Yuan, G. L.; Qin, X. Y.; Liu, J. Photothermal-chemotherapy integrated nanoparticles with tumor microenvironment response enhanced the induction of immunogenic cell Death for colorectal cancer efficient treatment. ACS Appl. Mater. Interfaces 2019, 11, 43393–43408.

[5]

Zhao, X.; Yang, K. N.; Zhao, R. F.; Ji, T. J.; Wang, X. C.; Yang, X.; Zhang, Y. L.; Cheng, K. M.; Liu, S. L.; Hao, J. H. et al. Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials 2016, 102, 187–197.

[6]

Chen, Y.; Zeng, L. Y.; Zhu, H. Z.; Wu, Q. F.; Liu, R.; Liang, Q.; Chen, B.; Dai, H. T.; Tang, K. Y.; Liao, C. L. et al. Ferritin nanocaged doxorubicin potentiates chemo-immunotherapy against hepatocellular carcinoma via immunogenic cell death. Small Methods 2022, 2201086.

[7]

Zhang, B. L.; Chen, X. H.; Tang, G. H.; Zhang, R. F.; Li, J. Y.; Sun, G. M.; Yan, X. Y.; Fan, K. L. Constructing a nanocage-based universal carrier for delivering TLR-activating nucleic acids to enhance antitumor immunotherapy. Nano Today 2022, 46, 101564.

[8]

Wang, K. W.; Jiang, M. L.; Zhou, J. L.; Liu, Y.; Zong, Q. Y.; Yuan, Y. Y. Tumor-acidity and bioorthogonal chemistry-mediated on-site size transformation clustered nanosystem to overcome hypoxic resistance and enhance chemoimmunotherapy. ACS Nano 2022, 16, 721–735.

[9]

Wang, Q.; Ju, X. L.; Wang, J. Y.; Fan, Y.; Ren, M. J.; Zhang, H. Immunogenic cell death in anticancer chemotherapy and its impact on clinical studies. Cancer Lett. 2018, 438, 17–23.

[10]

Jin, S. M.; Lee, S. N.; Kim, J. E.; Yoo, Y. J.; Song, C.; Shin, H. S.; Phuengkham, H.; Lee, C. H.; Um, S. H.; Lim, Y. T. Overcoming chemoimmunotherapy-induced immunosuppression by assemblable and depot forming immune modulating nanosuspension. Adv. Sci. 2021, 8, 2102043.

[11]

Tibbs, E.; Cao, X. F. Emerging canonical and non-canonical roles of granzyme B in health and disease. Cancers 2022, 14, 1436.

[12]

Xu, L. L.; Liu, N. H.; Zhan, W. J.; Deng, Y.; Chen, Z. X.; Liu, X. Y.; Gao, G.; Chen, Q.; Liu, Z.; Liang, G. L. Granzyme B turns nanoparticle fluorescence “On” for imaging cytotoxic T lymphocyte activity in vivo. ACS Nano 2022, 16, 19328–19334.

[13]

Nüssing, S.; Sutton, V. R.; Trapani, J. A.; Parish, I. A. Beyond target cell death-Granzyme serine proteases in health and disease. Mol. Aspects Med. 2022, 88, 101152.

[14]

Han, R.; Yu, L. T.; Zhao, C. X.; Li, Y.; Ma, Y. Y.; Zhai, Y. W.; Qian, Z. Y.; Gu, Y. Q.; Li, S. W. Inhibition of SerpinB9 to enhance granzyme B-based tumor therapy by using a modified biomimetic nanoplatform with a cascade strategy. Biomaterials 2022, 288, 121723.

[15]

Ibáñez-Molero, S.; van Vliet, A.; Pozniak, J.; Hummelink, K.; Terry, A. M.; Monkhorst, K.; Sanders, J.; Hofland, I.; Landeloos, E.; Van Herck, Y. et al. SERPINB9 is commonly amplified and high expression in cancer cells correlates with poor immune checkpoint blockade response. OncoImmunology 2022, 11, 2139074.

[16]

Velotti, F.; Barchetta, I.; Cimini, F. A.; Cavallo, M. G. Granzyme B in Inflammatory diseases: Apoptosis, inflammation, extracellular matrix remodeling, epithelial-to-mesenchymal transition and fibrosis. Front. Immunol. 2020, 11, 587581.

[17]

Rauner, G.; Kuperwasser, C. Microenvironmental control of cell fate decisions in mammary gland development and cancer. Dev. Cell 2021, 56, 1875–1883.

[18]

Jiang, L. W.; Wang, Y. J.; Zhao, J.; Uehara, M.; Hou, Q. M.; Kasinath, V.; Ichimura, T.; Banouni, N.; Dai, L. et al. Direct tumor killing and immunotherapy through anti-SerpinB9 therapy. Cell 2020, 183, 1219–1233.e18.

[19]

Hirst, C. E.; Buzza, M. S.; Bird, C. H.; Warren, H. S.; Cameron, P. U.; Zhang, M. L.; Ashton-Rickardt, P. G.; Bird, P. I. The intracellular granzyme B inhibitor, proteinase inhibitor 9, is up-regulated during accessory cell maturation and effector cell degranulation, and its overexpression enhances CTL potency. J. Immunol. 2003, 170, 805–815.

[20]

Lan, Y.; Liang, Q. W.; Sun, Y.; Cao, A. C.; Liu, L.; Yu, S. Y.; Zhou, L. Y.; Liu, J. X.; Zhu, R. Y.; Liu, Y. H. Codelivered chemotherapeutic doxorubicin via a dual-functional immunostimulatory polymeric prodrug for breast cancer immunochemotherapy. ACS Appl. Mater. Interfaces 2020, 12, 31904–31921.

[21]

Lee, N. K.; Choi, J. U.; Kim, H. R.; Chung, S. W.; Ko, Y. G.; Cho, Y. S.; Park, S. J.; Lee, E. J.; Kim, S. Y.; Kim, I. S. et al. Caspase-cleavable peptide-doxorubicin conjugate in combination with CD47-antagonizing nanocage therapeutics for immune-mediated elimination of colorectal cancer. Biomaterials 2021, 277, 121105.

[22]

Choi, J.; Shim, M. K.; Yang, S.; Hwang, H. S.; Cho, H.; Kim, J.; Yun, W. S.; Moon, Y.; Kim, J.; Yoon, H. Y. et al. Visible-light-triggered prodrug nanoparticles combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. ACS Nano 2021, 15, 12086–12098.

[23]

Qiu, M.; Sun, H. L.; Meng, F. H.; Cheng, R.; Zhang, J.; Deng, C.; Zhong, Z. Y. Lipopepsomes: A novel and robust family of nano-vesicles capable of highly efficient encapsulation and tumor-targeted delivery of doxorubicin hydrochloride in vivo. J. Controlled Release 2018, 272, 107–113.

[24]

Wu, J. R.; Meng, Z. Y.; Exner, A. A.; Cai, X. J.; Xie, X.; Hu, B.; Chen, Y.; Zheng, Y. Y. Biodegradable cascade nanocatalysts enable tumor-microenvironment remodeling for controllable CO release and targeted/synergistic cancer nanotherapy. Biomaterials 2021, 276, 121001.

[25]

Zhang, Y. L.; Wei, J. Y.; Liu, S. L.; Wang, J.; Han, X. X.; Qin, H.; Lang, J. Y.; Cheng, K. M.; Li, Y. Y.; Qi, Y. Q. et al. Inhibition of platelet function using liposomal nanoparticles blocks tumor metastasis. Theranostics 2017, 7, 1062–1071.

[26]

Wang, L.; Niu, X. X.; Song, Q. L.; Jia, J. J.; Hao, Y. W.; Zheng, C. X.; Ding, K. L.; Xiao, H. F.; Liu, X. X.; Zhang, Z. Z. et al. A two-step precise targeting nanoplatform for tumor therapy via the alkyl radicals activated by the microenvironment of organelles. J. Controlled Release 2020, 318, 197–209.

[27]

Zhang, L. J.; Qi, Y. Q.; Min, H.; Ni, C.; Wang, F.; Wang, B.; Qin, H.; Zhang, Y. L.; Liu, G. N.; Qin, Y. et al. Cooperatively responsive peptide nanotherapeutic that regulates angiopoietin receptor tie2 activity in tumor microenvironment to prevent breast tumor relapse after chemotherapy. ACS Nano 2019, 13, 5091–5102.

[28]

Manzari, M. T.; Shamay, Y.; Kiguchi, H.; Rosen, N.; Scaltriti, M.; Heller, D. A. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 2021, 6, 351–370.

[29]

Wang, Z. R.; Zhang, S.; Zhang, R. F.; Chen, X. H.; Sun, G. M.; Zhou, M.; Han, Q. B.; Zhang, B. L.; Zhao, Y.; Jiang, B. et al. Bioengineered dual-targeting protein nanocage for stereoscopical loading of synergistic hydrophilic/hydrophobic drugs to enhance anticancer efficacy. Adv. Funct. Mater. 2021, 31, 2102004.

[30]

Han, X. X.; Cheng, K. M.; Xu, Y.; Wang, Y. Z.; Min, H.; Zhang, Y. L.; Zhao, X.; Zhao, R. R.; Anderson, G. J.; Ren, L. et al. Modularly designed peptide nanoprodrug augments antitumor immunity of PD-L1 checkpoint blockade by targeting indoleamine 2, 3-dioxygenase. J. Am. Chem. Soc. 2020, 142, 2490–2496.

[31]

Medema, J. P.; de Jong. J.; Peltenburg, L. T. C.; Verdegaal, E. M. E.; Gorter, A.; Bres, S. A.; Franken, K. L. M. C.; Hahne, M.; Albar, J. P.; Melief, C. J. M. et al. Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc. Natl. Acad. Sci. USA 2001, 98, 11515–11520.

Nano Research
Pages 13250-13258
Cite this article:
Huang T, Sun X, Qi Y, et al. Immunogenic cell death effects induced by doxorubicin improved chemo-immunotherapy via restoration of granzyme B activity. Nano Research, 2023, 16(12): 13250-13258. https://doi.org/10.1007/s12274-023-5581-6
Topics:
Part of a topical collection:

1462

Views

6

Crossref

5

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 10 January 2023
Revised: 14 February 2023
Accepted: 14 February 2023
Published: 18 March 2023
© Tsinghua University Press 2023
Return