AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In-situ constructed polymer/alloy composite with high ionic conductivity as an artificial solid electrolyte interphase to stabilize lithium metal anode

Ai-Long Chen1,§Yushan Qian1,§Shujun Zheng1Yuyang Chen1Yue Ouyang1Lulu Mo1Zheng-Long Xu2Yue-E Miao1( )Tianxi Liu1,3
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Hum, Kowloon, Hong Kong 999077, China
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China

§ Ai-Long Chen and Yushan Qian contributed equally to this work.

Show Author Information

Graphical Abstract

A double-layered polymer/alloy composite artificial solid electrolyte interphase (SEI) composed of a robust poly(1,3-dioxolane) protective layer, Sn and LiCl nanoparticles, was developed to simultaneously prevent the crack of SEI layer and lithium (Li) dendrite growth in Li metal battery applications.

Abstract

Lithium (Li) metal is regarded as the best anode material for lithium metal batteries (LMBs) due to its high theoretical specific capacity and low redox potential. However, the notorious dendrites growth and extreme instability of the solid electrolyte interphase (SEI) layers have severely retarded the commercialization process of LMBs. Herein, a double-layered polymer/alloy composite artificial SEI composed of a robust poly(1,3-dioxolane) (PDOL) protective layer, Sn and LiCl nanoparticles, denoted as PDOL@Sn-LiCl, is fabricated by the combination of in-situ substitution and polymerization processes on the surface of Li metal anode. The lithiophilic Sn-LiCl multiphase can supply plenty of Li-ion transport channels, contributing to the homogeneous nucleation and dense accumulation of Li metal. The mechanically tough PDOL layer can maintain the stability and compact structure of the inorganic layer in the long-term cycling, and suppress the volume fluctuation and dendrites formation of the Li metal anode. As a result, the symmetrical cell under the double-layered artificial SEI protection shows excellent cycling stability of 300 h at 5.0 mA·cm−2 for 1 mAh·cm−2. Notably, the Li||LiFePO4 full cell also exhibits enhanced capacity retention of 150.1 mAh·g−1 after 600 cycles at 1.0 C. Additionally, the protected Li foil can effectively resist the air and water corrosion, signifying the safe operation of Li metal in practical applications. This present finding proposed a different tactic to achieve safe and dendrite-free Li metal anodes with excellent cycling stability.

Electronic Supplementary Material

Download File(s)
12274_2023_5584_MOESM1_ESM.pdf (1,022.8 KB)

References

[1]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[2]

Shi, F. Y.; Chen, C. H.; Xu, Z. L. Recent advances on electrospun nanofiber materials for post-lithium ion batteries. Adv. Fiber Mater. 2021, 3, 275–301.

[3]

Xu, Z. L.; Liu, X. M.; Luo, Y. S.; Zhou, L. M.; Kim, J. K. Nanosilicon anodes for high performance rechargeable batteries. Prog. Mater. Sci. 2017, 90, 1–44.

[4]

Kim, H.; Jeong, G.; Kim, Y. U.; Kim, J. H.; Park, C. M.; Sohn, H. J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 2013, 42, 9011–9034.

[5]

Ni, L.; Xu, G. J.; Li, C. C.; Cui, G. L. Electrolyte formulation strategies for potassium-based batteries. Exploration 2022, 2, 20210239.

[6]

Zhang, W. D.; Wu, Q.; Huang, J. X.; Fan, L.; Shen, Z. Y.; He, Y.; Feng, Q.; Zhu, G. N.; Lu, Y. Y. Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 2020, 32, 2001740.

[7]

Jiang, Z. P.; Jin, L.; Zeng, Z. Q.; Xie, J. Facile preparation of a stable 3D host for lithium metal anodes. Chem. Commun. 2020, 56, 9898–9900.

[8]

Chen, Y. Y.; Zhou, G. Y.; Zong, W.; Ouyang, Y.; Chen, K.; Lv, Y.; Miao, Y. E.; Liu, T. X. Porous polymer composite separators with three-dimensional ion-selective nanochannels for high-performance Li-S batteries. Compos. Commun. 2021, 25, 100679.

[9]

Zhou, C. Y.; Zong, W.; Zhou, G. Y.; Fan, X. S.; Miao, Y. E. Radical-functionalized polymer nanofiber composite separator for ultra-stable dendritic-free lithium metal batteries. Compos. Commun. 2021, 25, 100696.

[10]

Liu, G. Z.; Weng, W.; Zhang, Z. H.; Wu, L. P.; Yang, J.; Yao, X. Y. Densified Li6PS5Cl nanorods with high ionic conductivity and improved critical current density for all-solid-state lithium batteries. Nano Lett. 2020, 20, 6660–6665.

[11]

Wan, H. L.; Liu, S. F.; Deng, T.; Xu, J. J.; Zhang, J. X.; He, X. Z.; Ji, X.; Yao, X. Y.; Wang, C. S. Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery. ACS Energy Lett. 2021, 6, 862–868.

[12]

Ma, L.; Kim, M. S.; Archer, L. A. Stable artificial solid electrolyte interphases for lithium batteries. Chem. Mater. 2017, 29, 4181–4189.

[13]

Wu, J. H.; Liu, S. F.; Han, F. D.; Yao, X. Y.; Wang, C. S. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 2021, 33, 2000751.

[14]

Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3, 16–21.

[15]

Wu, J. H.; Shen, L.; Zhang, Z. H.; Liu, G. Z.; Wang, Z. Y.; Zhou, D.; Wan, H. L.; Xu, X. X.; Yao, X. Y. All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes. Electrochem. Energy Rev. 2021, 4, 101–135.

[16]

Cheng, H.; Yan, C. Y.; Orenstein, R.; Dirican, M.; Wei, S. Z.; Subjalearndee, N.; Zhang, X. W. Polyacrylonitrile nanofiber-reinforced flexible single-ion conducting polymer electrolyte for high-performance, room-temperature all-solid-state Li-metal batteries. Adv. Fiber Mater. 2022, 4, 532–546.

[17]

Hencz, L.; Chen, H.; Wu, Z. Z.; Qian, S. S.; Chen, S.; Gu, X. X.; Liu, X. H.; Yan, C.; Zhang, S. Q. Highly branched amylopectin binder for sulfur cathodes with enhanced performance and longevity. Exploration 2022, 2, 20210131.

[18]

Tu, Z. Y.; Choudhury, S.; Zachman, M. J.; Wei, S. Y.; Zhang, K. H.; Kourkoutis, L. F.; Archer, L. A. Fast ion transport at solid-solid interfaces in hybrid battery anodes. Nat. Energy 2018, 3, 310–316.

[19]

Li, S. S.; Huang, Y.; Luo, C.; Ren, W. H.; Yang, J.; Li, X.; Wang, M. S.; Cao, H. J. Stabilize lithium metal anode through constructing a lithiophilic viscoelastic interface based on hydroxypropyl methyl cellulose. Chem. Eng. J. 2020, 399, 125687.

[20]

Bryantsev, V. S.; Giordani, V.; Walker, W.; Uddin, J.; Lee, I.; Van Duin, A. C. T.; Chase, G. V.; Addison, D. Investigation of fluorinated amides for solid-electrolyte interphase stabilization in Li-O2 batteries using amide-based electrolytes. J. Phys. Chem. C 2013, 117, 11977–11988.

[21]

Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 2017, 27, 1605989.

[22]

Chen, D. D.; Huang, S.; Zhong, L.; Wang, S. J.; Xiao, M.; Han, D. M.; Meng, Y. Z. In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting Li dendrite puncture. Adv. Funct. Mater. 2020, 30, 1907717.

[23]

Chen, H.; Pei, A.; Lin, D. C.; Xie, J.; Yang, A. K.; Xu, J. W.; Lin, K. X.; Wang, J. Y.; Wang, H. S.; Shi, F. F. et al. Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode. Adv. Energy Mater. 2019, 9, 1900858.

[24]

Chen, L.; Chen, K. S.; Chen, X. J.; Ramirez, G.; Huang, Z. N.; Geise, N. R.; Steinrück, H. G.; Fisher, B. L.; Shahbazian-Yassar, R.; Toney, M. F. et al. Novel ALD chemistry enabled low-temperature synthesis of lithium fluoride coatings for durable lithium anodes. ACS Appl. Mater. Interfaces 2018, 10, 26972–26981.

[25]

Yang, Q. L.; Li, W. L.; Dong, C.; Ma, Y. Y.; Yin, Y. X.; Wu, Q. B.; Xu, Z. T.; Ma, W.; Fan, C.; Sun, K. N. PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries. J. Energy Chem. 2020, 42, 83–90.

[26]

Lang, J. L.; Long, Y. Z.; Qu, J. L.; Luo, X. Y.; Wei, H. H.; Huang, K.; Zhang, H. T.; Qi, L. H.; Zhang, Q. F.; Li, Z. C. et al. One-pot solution coating of high quality LiF layer to stabilize Li metal anode. Energy Storage Mater. 2019, 16, 85–90.

[27]

Jiang, Z. P.; Jin, L.; Han, Z. L.; Hu, W.; Zeng, Z. Q.; Sun, Y. L.; Xie, J. Facile generation of polymer-alloy hybrid layers for dendrite-free lithium-metal anodes with improved moisture stability. Angew. Chem., Int. Ed. 2019, 58, 11374–11378.

[28]

Liu, Y. Y.; Lin, D. C.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 2017, 29, 1605531.

[29]

Zhang, X. J.; Chen, Y. F.; Ma, F.; Chen, X.; Wang, B.; Wu, Q.; Zhang, Z. H.; Liu, D. W.; Zhang, W. L.; He, J. R. et al. Regulating Li uniform deposition by lithiophilic interlayer as Li-ion redistributor for highly stable lithium metal batteries. Chem. Eng. J. 2022, 436, 134945.

[30]

Hu, J. L.; Chen, K. Y.; Li, C. L. Nanostructured Li-rich fluoride coated by ionic liquid as high ion-conductivity solid electrolyte additive to suppress dendrite growth at Li metal anode. ACS Appl. Mater. Interfaces 2018, 10, 34322–34331.

[31]

Zhang, Y.; Liu, Y.; Zhou, J. J.; Wang, D. D.; Tan, L. G.; Yi, C. Y. 3D cubic framework of fluoride perovskite SEI inducing uniform lithium deposition for air-stable and dendrite-free lithium metal anodes. Chem. Eng. J. 2022, 431, 134266.

[32]

Hu, A. J.; Chen, W.; Du, X. C.; Hu, Y.; Lei, T. Y.; Wang, H. B.; Xue, L. X.; Li, Y. Y.; Sun, H.; Yan, Y. C. et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 2021, 14, 4115–4124.

[33]

Cui, C. Y.; Yang, C. Y.; Eidson, N.; Chen, J.; Han, F. D.; Chen, L.; Luo, C.; Wang, P. F.; Fan, X. L.; Wang, C. S. A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase. Adv. Mater. 2020, 32, 1906427.

[34]

Hu, Z. L.; Zhang, S.; Dong, S. M.; Li, W. J.; Li, H.; Cui, G. L.; Chen, L. Q. Poly(ethyl α-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface stability of Li metal anodes. Chem. Mater. 2017, 29, 4682–4689.

[35]

Zhou, D.; Tkacheva, A.; Tang, X.; Sun, B.; Shanmukaraj, D.; Li, P.; Zhang, F.; Armand, M.; Wang, G. X. Stable conversion chemistry-based lithium metal batteries enabled by hierarchical multifunctional polymer electrolytes with near-single ion conduction. Angew. Chem., Int. Ed. 2019, 58, 6001–6006.

[36]

Liu, S. F.; Ji, X.; Yue, J.; Hou, S.; Wang, P. F.; Cui, C. Y.; Chen, J.; Shao, B. W.; Li, J. R.; Han, F. D. et al. High interfacial-energy interphase promoting safe lithium metal batteries. J. Am. Chem. Soc. 2020, 142, 2438–2447.

[37]

Wu, H. P.; Cao, Y.; Su, H. P.; Wang, C. Tough gel electrolyte using double polymer network design for the safe, stable cycling of lithium metal anode. Angew. Chem., Int. Ed. 2018, 57, 1361–1365.

[38]

Liu, B. Y.; Gong, Y. H.; Fu, K.; Han, X. G.; Yao, Y. G.; Pastel, G.; Yang, C. P.; Xie, H.; Wachsman, E. D.; Hu, L. B. Garnet solid electrolyte protected Li-metal batteries. ACS Appl. Mater. Interfaces 2017, 9, 18809–18815.

[39]

Choudhury, S.; Tu, Z. Y.; Stalin, S.; Vu, D.; Fawole, K.; Gunceler, D.; Sundararaman, R.; Archer, L. A. Electroless formation of hybrid lithium anodes for fast interfacial ion transport. Angew. Chem., Int. Ed. 2017, 56, 13070–13077.

[40]

Li, N. W.; Shi, Y.; Yin, Y. X.; Zeng, X. X.; Li, J. Y.; Li, C. J.; Wan, L. J.; Wen, R.; Guo, Y. G. A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem., Int. Ed. 2018, 57, 1505–1509.

[41]

Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.

[42]

Wang, L. G.; Liu, T. F.; Wu, T. P.; Lu, J. Exploring new battery knowledge by advanced characterizing technologies. Exploration 2021, 1, 20210130.

[43]

Zhao, Q.; Liu, X. T.; Stalin, S.; Khan, K.; Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 2019, 4, 365–373.

[44]

Zhang, J. J.; Zang, X.; Wen, H. J.; Dong, T. T.; Chai, J. C.; Li, Y.; Chen, B. B.; Zhao, J. W.; Dong, S. M.; Ma, J. et al. High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J. Mater. Chem. A 2017, 5, 4940–4948.

[45]

Zhang, J. J.; Zhao, J. H.; Yue, L. P.; Wang, Q. F.; Chai, J. C.; Liu, Z. H.; Zhou, X. H.; Li, H.; Guo, Y. G.; Cui, G. L. et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv. Energy Mater. 2015, 5, 1501082.

[46]

Wang, T. L.; Huang, F. J. XPS and ATR surface studies of block copolyurethanes based on 1, 2-ethylene bis(4-phenyl isocyanate). Macromol. Rapid Commun. 1999, 20, 497–504.

Nano Research
Pages 3888-3894
Cite this article:
Chen A-L, Qian Y, Zheng S, et al. In-situ constructed polymer/alloy composite with high ionic conductivity as an artificial solid electrolyte interphase to stabilize lithium metal anode. Nano Research, 2023, 16(3): 3888-3894. https://doi.org/10.1007/s12274-023-5584-3
Topics:
Part of a topical collection:

716

Views

4

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 01 May 2022
Revised: 29 January 2023
Accepted: 16 February 2023
Published: 27 February 2023
© Tsinghua University Press 2023
Return