AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Unraveling the advantages of Pd/CeO2 single-atom catalysts in the NO + CO reaction by model catalysts

Qian Xu1,2,§Xingwang Cheng2,§Ningqiang Zhang1Yi Tu2Lihui Wu2Haibin Pan2Jun Hu2Honghe Ding2Junfa Zhu2 ( )Yadong Li1,3( )
Department of Chemistry, Tsinghua University, Beijing 100084, China
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China

§ Qian Xu and Xingwang Cheng contributed equally to this work.

Show Author Information

Graphical Abstract

Pd nanoparticles/CeO2 and Pd1/CeO2 model catalysts were prepared and the NO + CO adsorption/reaction on both model catalysts were explored in detail.

Abstract

Selective catalytic reduction of NO by CO is challenging in environmental catalysis but attractive owing to the advantage of simultaneous elimination of NO and CO. Here, model catalysts consisting of Pd nanoparticles (NPs) and single-atom Pd supported on a CeO2 (111) film grown on Cu (111) (denoted as Pd NPs/CeO2 and Pd1/CeO2, respectively) were successfully prepared and characterized by synchrotron radiation photoemission spectroscopy (SRPES) and infrared reflection absorption spectroscopy (IRAS). The NO + CO adsorption/reaction on the Pd1/CeO2 and Pd NPs/CeO2 catalysts were carefully investigated using SRPES, temperature-programmed desorption (TPD), and IRAS. It is found that the reaction products on both model catalysts are in good agreement with those on real catalysts, demonstrating the good reliability of using these model catalysts to study the reaction mechanism of the NO + CO reaction. On the Pd NPs/CeO2 surface, N2 is formed by the combination of atomic N coming from the dissociation of NO on Pd NPs at higher temperatures. N2O formation occurs probably via chemisorbed NO combined with atomic N on the surface. While on the single-atom Pd1/CeO2 surface, no N2O is detected. The 100% N2 selectivity may stem from the formation of O-N-N-O* intermediate on the surface. Through this study, direct experimental evidence for the reaction mechanisms of the NO + CO reaction is provided, which supports the previous density functional theory (DFT) calculations.

Electronic Supplementary Material

Download File(s)
12274_2023_5585_MOESM1_ESM.pdf (1.3 MB)

References

[1]

Srinivasan, A.; Depcik, C. Review of chemical reactions in the no reduction by co on rhodium/alumina catalysts. Catal. Rev. Sci. Eng. 2010, 52, 462–493.

[2]

Pisanu, A. M.; Gigola, C. E. NO decomposition and NO reduction by CO over Pd/α-Al2O3. Appl. Catal. B: Environ. 1999, 20, 179–189.

[3]

Wang, X. W.; Wu, X. L.; Maeda, N.; Baiker, A. Striking activity enhancement of gold supported on Al-Ti mixed oxide by promotion with ceria in the reduction of NO with CO. Appl. Catal. B: Environ. 2017, 209, 62–68.

[4]

Sui, C.; Yuan, F. L.; Zhang, Z. P.; Wang, D.; Niu, X. Y.; Zhu, Y. J. Catalytic activity of Ru/La1.6Ba0.4NiO4 perovskite-like catalyst for NO + CO reaction: Interaction between Ru and La1.6Ba0.4NiO4. Mol. Catal. 2017, 437, 37–46.

[5]

Lv, Y. Y.; Zhang, H. L.; Yao, X. J.; Dong, L.; Chen, Y. Investigation of the physicochemical properties of CuO/Sm2O3/γ-Al2O3 catalysts and their activity for NO removal by CO. J. Mol. Catal. A Chem. 2016, 420, 34–44.

[6]

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

[7]

Asokan, C.; Yang, Y.; Dang, A. L.; Getsoian, A.; Christopher, P. Low-temperature ammonia production during NO reduction by CO is due to atomically dispersed rhodium active sites. ACS Catal. 2020, 10, 5217–5222.

[8]

Fernández, E.; Liu, L. C.; Boronat, M.; Arenal, R.; Concepcion, P.; Corma, A. Low-temperature catalytic NO reduction with CO by subnanometric Pt clusters. ACS Catal. 2019, 9, 11530–11541.

[9]

Lorenzi, J. M.; Matera, S.; Reuter, K. Synergistic inhibition of oxide formation in oxidation catalysis: A first-principles kinetic monte carlo study of NO + CO oxidation at Pd (100). ACS Catal. 2016, 6, 5191–5197.

[10]

Tan, X. F.; Cheng, G.; Song, X. J.; Chen, X.; Dai, W. X.; Fu, X. Z. The promoting effect of visible light on the CO + NO reaction over the Pd/N-TiO2 catalyst. Catal. Sci. Technol. 2019, 9, 3637–3646.

[11]

Hu, Q.; Cao, K.; Lang, Y.; Chen, R.; Chu, S. Q.; Jia, L. W.; Yue, J.; Shan, B. Improved NO-CO reactivity of highly dispersed Pt particles on CeO2 nanorod catalysts prepared by atomic layer deposition. Catal. Sci. Technol. 2019, 9, 2664–2672.

[12]

Keiski, R. L.; Härkönen, M.; Lahti, A.; Maunula, T.; Savimäki, A.; Slotte, T. An infrared study of CO and NO adsorption on Pt, Rh, Pd 3-way catalysts. Stud. Surf. Sci. Catal. 1995, 96, 85–96.

[13]

Hegde, M. S.; Madras, G.; Patil, K. C. Noble metal ionic catalysts. Acc. Chem. Res. 2009, 42, 704–712.

[14]

Li, L. C.; Zhang, N. Q.; Huang, X.; Liu, Y. Y.; Li, Y.; Zhang, G. Z.; Song, L. Y.; He, H. Hydrothermal stability of core–shell Pd@Ce0.5Zr0.5O2/Al2O3 catalyst for automobile three-way reaction. ACS Catal. 2018, 8, 3222–3231.

[15]

Ye, C. L.; Peng, M.; Wang, Y. H.; Zhang, N. Q.; Wang, D. S Jiao, M. L.; Miller, J. T. Surface hexagonal Pt1Sn1 intermetallic on Pt nanoparticles for selective propane dehydrogenation. ACS Appl. Mater. Interfaces 2020, 12, 25903–25909.

[16]

Li, L. C.; Zhang, N. Q.; He, H.; Zhang, G. Z.; Song, L. Y.; Qiu, W. G. Shape-controlled synthesis of Pd nanocrystals with exposed (110) facets and their catalytic applications. Catal. Today 2019, 327, 28–36.

[17]

Granger, P.; Dhainaut, F.; Pietrzik, S.; Malfoy, P.; Mamede, A. S.; Leclercq, L.; Leclercq, G. An overview: Comparative kinetic behaviour of Pt, Rh and Pd in the NO + CO and NO + H2 reactions. Top. Catal. 2006, 39, 65–76.

[18]

Roy, S.; Hegde, M. S. Pd ion substituted CeO2: A superior de-NOx catalyst to Pt or Rh metal ion doped ceria. Catal. Commun. 2008, 9, 811–815.

[19]

Roy, S.; Marimuthu, A.; Hegde, M. S.; Madras, G. High rates of NO and N2O reduction by CO, CO and hydrocarbon oxidation by O2 over nano crystalline Ce0.98Pd0.02O2-delta: Catalytic and kinetic studies. Appl. Catal. B: Environ. 2007, 71, 23–31.

[20]

Tang, K.; Ren, Y. Q.; Liu, W.; Wei, J. J.; Guo, J. X.; Wang, S. P.; Yang, Y. Z. Insight investigation of active palladium surface sites in palladium-ceria catalysts for NO + CO reaction. ACS Appl. Mater. Interfaces 2018, 10, 13614–13624.

[21]

Liu, J. Y. Catalysis by supported single metal atoms. ACS Catal. 2017, 7, 34–59.

[22]

Singh, S. A.; Vishwanath, K.; Madras, G. Role of hydrogen and oxygen activation over Pt and Pd-doped composites for catalytic hydrogen combustion. ACS Appl. Mater. Interfaces 2017, 9, 19380–19388.

[23]

Wang, Y. M.; Wöell, C. IR spectroscopic investigations of chemical and photochemical reactions on metal oxides: Bridging the materials gap. Chem. Soc. Rev. 2017, 46, 1875–1932.

[24]

Xiao, L. H.; Sun, K. P.; Xu, X. L.; Li, X. N. Low-temperature catalytic combustion of methane over Pd/CeO2 prepared by deposition-precipitation method. Catal. Commun. 2005, 6, 796–801.

[25]

Zhu, H. Q.; Qin, Z. F.; Shan, W. J.; Shen, W. J.; Wang, J. G. Low-temperature oxidation of CO over Pd/CeO2-TiO2 catalysts with different pretreatments. J. Catal. 2005, 233, 41–50.

[26]

Liu, Y. N.; Yang, J.; Yang, J.; Wang, L.; Wang, Y. S.; Zhan, W. C.; Guo, Y. L.; Zhao, Y. K.; Guo, Y. Understanding the three-way catalytic reaction on Pd/CeO2 by tuning the chemical state of Pd. Appl. Surf. Sci. 2021, 556, 149766.

[27]

Hu, Z.; Liu, X. F.; Meng, D. M.; Guo, Y.; Guo, Y. L.; Lu, G. Z. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation. ACS Catal. 2016, 6, 2265–2279.

[28]

Ma, J.; Lou, Y.; Cai, Y. F.; Zhao, Z. Y.; Wang, L.; Zhan, W. C.; Guo, Y. L.; Guo, Y. The relationship between the chemical state of Pd species and the catalytic activity for methane combustion on Pd/CeO2. Catal. Sci. Technol. 2018, 8, 2567–2577.

[29]

Mayernick, A. D.; Janik, M. J. Ab initio thermodynamic evaluation of Pd atom interaction with CeO2 surfaces. J. Chem. Phys. 2009, 131, 084701.

[30]

Neitzel, A.; Figueroba, A.; Lykhach, Y.; Skála, T.; Vorokhta, M.; Tsud, N.; Mehl, S.; Ševčíková, K.; Prince, K. C.; Neyman, K. M. et al. Atomically dispersed Pd, Ni, and Pt species in ceria-based catalysts: Principal differences in stability and reactivity. J. Phys. Chem. C 2016, 120, 9852–9862.

[31]

Boronin, A. I.; Slavinskaya, E. M.; Danilova, I. G.; Gulyaev, R. V.; Amosov, Y. I.; Kuznetsov, P. A.; Polukhina, I. A.; Koscheev, S. V.; Zaikovskii, V. I.; Noskov, A. S. Investigation of palladium interaction with cerium oxide and its state in catalysts for low-temperature CO oxidation. Catal. Today 2009, 144, 201–211.

[32]

Ding, W. C.; Gu, X. K.; Su, H. Y.; Li, W. X. Single Pd atom embedded in CeO2 (111) for NO reduction with CO: A first-principles study. J. Phys. Chem. C 2014, 118, 12216–12223.

[33]

Zhang, L.; Spezzati, G.; Muravev, V.; Verheijen, M. A.; Zijlstra, B.; Filot, I. A. W.; Su, Y. Q.; Chang, M. W.; Hensen, E. J. M. Improved Pd/CeO2 catalysts for low-temperature NO reduction: Activation of CeO2 lattice oxygen by Fe doping. ACS Catal. 2021, 11, 5614–5627.

[34]

Hu, S. W.; Wang, W. J.; Wang, Y.; Xu, Q.; Zhu, J. F. Interaction of Zr with CeO2 (111) thin film and its influence on supported Ag nanoparticles. J. Phys. Chem. C 2015, 119, 18257–18266.

[35]

Ju, H. X.; Knesting, K. M.; Zhang, W.; Pan, X.; Wang, C. H.; Yang, Y. W.; Ginger, D. S.; Zhu, J. F. Interplay between interfacial structures and device performance in organic solar cells: A case study with the low work function metal, calcium. ACS Appl. Mater. Interfaces 2016, 8, 2125–2131.

[36]

Zhou, J.; Baddorf, A. P.; Mullins, D. R.; Overbury, S. H. Growth and characterization of Rh and Pd nanoparticles on oxidized and reduced CeOx (111) thin films by scanning tunneling microscopy. J. Phys. Chem. C 2008, 112, 9336–9345.

[37]

Priolkar, K. R.; Bera, P.; Sarode, P. R.; Hegde, M. S.; Emura, S.; Kumashiro, R.; Lalla, N. P. Formation of Ce1−xPdxO2−δ solid solution in combustion-synthesized Pd/CeO2 catalyst: XRD, XPS, and EXAFS investigation. Chem. Mater. 2002, 14, 2120–2128.

[38]

Muravev, V.; Spezzati, G.; Su, Y. Q.; Parastaev, A.; Chiang, F. K.; Longo, A.; Escudero, C.; Kosinov, N.; Hensen, E. J. M. Interface dynamics of Pd-CeO2 single-atom catalysts during CO oxidation. Nat. Catal. 2021, 4, 469–478.

[39]

Muravev, V.; Simons, J. F. M.; Parastaev, A.; Verheijen, M. A.; Struijs, J. J. C.; Kosinov, N.; Hensen, E. J. M. Operando spectroscopy unveils the catalytic role of different palladium oxidation states in CO oxidation on Pd/CeO2 catalysts. Angew. Chem., Int. Ed. 2022, 61, e202200434.

[40]

Gulyaev, R. V.; Slavinskaya, E. M.; Novopashin, S. A.; Smovzh, D. V.; Zaikovskii, A. V.; Osadchii, D. Y.; Bulavchenko, O. A.; Korenev, S. V.; Boronin, A. I. Highly active PdCeOx composite catalysts for low-temperature CO oxidation, prepared by plasma-arc synthesis. Appl. Catal. B: Environ. 2014, 147, 132–143.

[41]

Gulyaev, R. V.; Kardash, T. Y.; Malykhin, S. E.; Stonkus, O. A.; Ivanova, A. S.; Boronin, A. I. The local structure of PdxCe1−xO2−xδ solid solutions. Phys. Chem. Chem. Phys. 2014, 16, 13523–13539.

[42]

Spezzati, G.; Benavidez, A. D.; DeLaRiva, A. T.; Su, Y.; Hofmann, J. P.; Asahina, S.; Olivier, E. J.; Neethling, J. H.; Miller, J. T.; Datye, A. K. et al. CO oxidation by Pd supported on CeO2 (100) and CeO2 (111) facets. Appl. Catal. B: Environ. 2019, 243, 36–46.

[43]

Spezzati, G.; Su, Y. Q.; Hofmann, J. P.; Benavidez, A. D.; DeLaRiva, A. T.; McCabe, J.; Datye, A. K.; Hensen, E. J. M. Atomically dispersed Pd-O species on CeO2 (111) as highly active sites for low-temperature CO oxidation. ACS Catal. 2017, 7, 6887–6891.

[44]

Jiang, D.; Wan, G.; García-Vargas, C. E.; Li, L.; Pereira-Hernandez, X. I.; Wang, C. M.; Wang, Y. Elucidation of the active sites in single-atom Pd1/CeO2 catalysts for low-temperature CO oxidation. ACS Catal. 2020, 10, 11356–11364.

[45]

Zeinalipour-Yazdi, C. D.; Willock, D. J.; Thomas, L.; Wilson, K.; Lee, A. F. CO adsorption over Pd nanoparticles: A general framework for IR simulations on nanoparticles. Surf. Sci. 2016, 646, 210–220.

[46]

Li, X.; Rupprechter, G. Sum frequency generation spectroscopy in heterogeneous model catalysis: A minireview of CO-related processes. Catal. Sci. Technol. 2021, 11, 12–26.

[47]

Xu, J.; Ouyang, L. K.; Mao, W.; Yang, X. J.; Xu, X. C.; Su, J. J.; Zhuang, T. Z.; Li, H.; Han, Y. F. Operando and kinetic study of low-temperature, lean-burn methane combustion over a Pd/γ-Al2O3 catalyst. ACS Catal. 2012, 2, 261–269.

[48]

Kong, D. D.; Wang, G. D.; Pan, Y. H.; Hu, S. W.; Hou, J. B.; Pan, H. B.; Campbell, C. T.; Zhu, J. F. Growth, structure, and stability of Ag on CeO2 (111): Synchrotron radiation photoemission studies. J. Phys. Chem. C 2011, 115, 6715–6725.

[49]

Bruix, A.; Lykhach, Y.; Matolínová, I.; Neitzel, A.; Skála, T.; Tsud, N.; Vorokhta, M.; Stetsovych, V.; Ševčíková, K.; Mysliveček, J. et al. Maximum noble-metal efficiency in catalytic materials: Atomically dispersed surface platinum. Angew. Chem., Int. Ed. 2014, 53, 10525–10530.

[50]

Senanayake, S. D.; Zhou, J.; Baddorf, A. P.; Mullins, D. R. The reaction of carbon monoxide with palladium supported on cerium oxide thin films. Surf. Sci. 2007, 601, 3215–3223.

[51]

Sugai, S.; Watanabe, H.; Miki, H.; Kioka, T.; Kawasaki, K. Chemisorption of NO on Pd single-crystals studied by UPS, AES and XPS. Vacuum 1990, 41, 90–92.

[52]

Miki, H.; Nagase, H.; Nagase, T.; Kioka, T.; Sugai, S.; Kawasaki, K. Chemisorption of NO on polycrystalline Pd surface studied by TDS, AES, UPS and XPS. Appl. Surf. Sci 1988, 33–34, 292–300.

[53]

Bertolo, M.; Jacobi, K. XPS/UPS investigation of NO on Pd (111) in the temperature range between 20 and 300 K. Surf. Sci. 1990, 236, 143–150.

[54]

Mamede, A. S.; Leclercq, G.; Payen, E.; Granger, P.; Gengembre, L.; Grimblot, J. XPS characterization of adsorbed reaction intermediates on automotive exhaust gas catalysts: NO and CO + NO interactions with Pd. Surf. Interface Anal. 2002, 34, 105–111.

[55]

Brown, W. A.; King, D. A. NO chemisorption and reactions on metal surfaces: A new perspective. J. Phys. Chem. B 2000, 104, 2578–2595.

[56]

Hess, C.; Ozensoy, E.; Yi, C. W.; Goodman, D. W. NO dimer and dinitrosyl formation on Pd (111): From ultra-high-vacuum to elevated pressure conditions. J. Am. Chem. Soc. 2006, 128, 2988–2994.

[57]

Nakamura, I.; Hamada, H.; Fujitani, T. Adsorption and decomposition of NO on K-deposited Pd (111). Surf. Sci. 2003, 544, 45–50.

[58]

Kampling, M.; Al-Shamery, K.; Freund, H. J.; Wilde, M.; Fukutani, K.; Murata, Y. Surface photochemistry on confined systems: UV-laser-induced photodesorption of NO from Pd-nanostructures on Al2O3. Phys. Chem. Chem. Phys. 2002, 4, 2629–2637.

[59]

Viñes, F.; Desikusumastuti, A.; Staudt, T.; Görling, A.; Libuda, J.; Neyman, K. M. A combined density-functional and IRAS study on the interaction of NO with Pd nanoparticles: Identifying new adsorption sites with novel properties. J. Phys. Chem. C 2008, 112, 16539–16549.

[60]

Xu, X. P.; Chen, P. J.; Goodman, D. W. A comparative study of the coadsorption of carbon monoxide and nitric oxide on Pd (100), Pd (111), and silica-supported palladium particles with infrared reflection-absorption spectroscopy. J. Phys. Chem. 1994, 98, 9242–9246.

[61]

Butorac, J.; Wilson, E. L.; Fielding, H. H.; Brown, W. A.; Minns, R. S. A RAIRS, TPD and femtosecond laser-induced desorption study of CO, NO and coadsorbed CO + NO on Pd (111). RSC Adv. 2016, 6, 66346–66359.

[62]

Mihaylov, M. Y.; Ivanova, E. Z.; Aleksandrov, H. A.; Petkov, P. S.; Vayssilov, G. N.; Hadjiivanov, K. I. Species formed during NO adsorption and NO + O2 co-adsorption on ceria: A combined FTIR and DFT study. Mol. Catal. 2018, 451, 114–124.

[63]

Wang, Z. W.; Chen, M. S.; Wan, H. L. CO oxidation over highly dispersive supported palladium catalysts. J. Xiamen Univ. Nat. Sci. 2011, 50, 65–69.

[64]

Vayssilov, G. N.; Mihaylov, M.; Petkov, P. S.; Hadjiivanov, K. I.; Neyman, K. M. Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: A combined density functional and infrared spectroscopy investigation. J. Phys. Chem. C 2011, 115, 23435–23454.

[65]

Li, H. G.; Jiao, X.; Li, L.; Zhao, N.; Xiao, F. K.; Wei, W.; Sun, Y. H.; Zhang, B. S. Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO2 over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M = Li, Mg and Zr) hydrotalcites. Catal. Sci. Technol. 2015, 5, 989–1005.

[66]

Zhang, X.; Li, W. Z.; Zhou, Z. A.; Chen, K.; Wu, M. W.; Yuan, L. High dispersed Pd supported on CeO2 (100) for CO oxidation at low temperature. Mol. Catal. 2021, 508, 111580.

[67]

Wang, B.; Weng, D.; Wu, X. D.; Ran, R. Modification of Pd-CeO2 catalyst by different treatments: Effect on the structure and CO oxidation activity. Appl. Surf. Sci. 2011, 257, 3878–3883.

[68]

Deng, Y. B.; Tian, P. F.; Liu, S. J.; He, H. Q.; Wang, Y.; Ouyang, L. K.; Yuan, S. J. Enhanced catalytic performance of atomically dispersed Pd on Pr-doped CeO2 nanorod in CO oxidation. J. Hazard. Mater. 2022, 426, 127793.

[69]

Mihaylov, M. Y.; Ivanova, E. Z.; Vayssilov, G. N.; Hadjiivanov, K. I. Revisiting ceria-NOx interaction: FTIR studies. Catal. Today 2020, 357, 613–620.

[70]

Li, G. X.; Kaneko, K.; Ozeki, S. Chemisorption and photoadsorption of NO on cerium(IV) oxide. Langmuir 1997, 13, 5894–5899.

[71]

Le Bourdon, G.; Adar, F.; Moreau, M.; Morel, S.; Reffner, J.; Mamede, A. S.; Dujardin, C.; Payen, E. In situ characterization by Raman and IR vibrational spectroscopies on a single instrument: DeNOx reaction over a Pd/γ-Al2O3 catalyst. Phys. Chem. Chem. Phys. 2003, 5, 4441–4444.

[72]

Martínez-Arias, A.; Soria, J.; Conesa, J. C.; Seoane, X. L.; Arcoya, A.; Cataluña, R. NO reaction at surface oxygen vacancies generated in cerium oxide. J. Chem. Soc. Faraday Trans. 1995, 91, 1679–1687.

[73]

Cheng, X. X.; Zhang, X. Y.; Su, D. X.; Wang, Z. Q.; Chang, J. C.; Ma, C. Y. NO reduction by CO over copper catalyst supported on mixed CeO2 and Fe2O3: Catalyst design and activity test. Appl. Catal. B: Environ. 2018, 239, 485–501.

[74]

Snis, A.; Panas, I. N2O2, N2O2 and N2O22−: Structures, energetics and N–N bonding. Chem. Phys. 1997, 221, 1–10.

[75]

Mašek, K.; Škoda, M.; Beran, J.; Cabala, M.; Prince, K. C.; Skála, T.; Tsud, N.; Matolín, V. Photoemission study of methanol adsorption and decomposition on Pd/CeO2 (111)/Cu (111) thin film model catalyst. Catal Lett. 2015, 145, 1474–1482.

[76]

Thirunavukkarasu, K.; Thirumoorthy, K.; Libuda, J.; Gopinath, C. S. A molecular beam study of the NO + CO reaction on Pd (111) surfaces. J. Phys. Chem. B 2005, 109, 13272–13282.

[77]

Zhang, L.; Filot, I. A. W.; Su, Y. Q.; Liu, J. X.; Hensen, E. J. M. Transition metal doping of Pd (111) for the NO + CO reaction. J. Catal. 2018, 363, 154–163.

Nano Research
Pages 8882-8892
Cite this article:
Xu Q, Cheng X, Zhang N, et al. Unraveling the advantages of Pd/CeO2 single-atom catalysts in the NO + CO reaction by model catalysts. Nano Research, 2023, 16(7): 8882-8892. https://doi.org/10.1007/s12274-023-5585-2
Topics:

1011

Views

13

Crossref

2

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 13 December 2022
Revised: 03 February 2023
Accepted: 16 February 2023
Published: 14 April 2023
© Tsinghua University Press 2023
Return