AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (24.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

High-performance flexible all-solid-state asymmetric supercapacitors based on binder-free MXene/cellulose nanofiber anode and carbon cloth/polyaniline cathode

Xiaoyu Bi1Meichun Li2Guoqiang Zhou1Chaozheng Liu1Runzhou Huang1( )Yang Shi1Ben Bin Xu3Zhanhu Guo3( )Wei Fan4Hassan Algadi3,5,6Shengbo Ge1( )
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
School of Textile Science and Engineering & Key Laboratory of Functional Textile Material and Product of Ministry of Education, Xi'an Polytechnic University, Xi'an 710048, China
College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
Department of Electrical Engineering, Faculty of Engineering, Najran University, Najran, 11001, Saudi Arabia
Show Author Information

Graphical Abstract

The added cellulose nanofibers (CNFs) not only improve the mechanical properties of the composite film electrode, but also adjust the electrode structure of the MXene/CNF (MCNF), thus effectively improving its electrochemical properties and facilitating the charge balance between the MCNF anode and the positive electrodes (CP) cathode. The assemble of asymmetric devices effectively expands the operating voltage window to 1.5 V and yields ultra-high weight power and energy density.

Abstract

The search for wearable electronics has been attracted great efforts, and there is an ever-growing demand for all-solid-state flexible energy storage devices. However, it is a challenge to obtain both positive and negative electrodes with excellent mechanical strength and match positive and negative charges to achieve high energy densities and operate voltages to satisfy practical application requirements. Here, flexible MXene (Ti3C2Tx)/cellulose nanofiber (CNF) composite film negative electrodes (MCNF) were fabricated with a vacuum filtration method, as well as positive electrodes (CP) by combining polyaniline (PANI) with carbon cloth (CC) using an in-situ polymerization method. Both positive and negative free-standing electrodes exhibited excellent electrochemical behavior and bendable/foldable flexibility. As a result, the all-pseudocapacitance asymmetric device of MCNF//CP assembled with charge-matched between anode and cathode achieves an extended voltage window of 1.5 V, high energy density of 30.6 Wh·kg−1 (1211 W·kg−1), and 86% capacitance retention after 5000 cycles, and the device maintains excellent bendability, simultaneously. This work will pave the way for the development of all-pseudocapacitive asymmetric supercapacitors (ASC) with simultaneously preeminent mechanical properties, high energy density, and wide operating voltage window.

References

[1]

Ma, Y. P.; Xie, X. B.; Yang, W. Y.; Yu, Z. P.; Sun, X. Q.; Zhang, Y. P.; Yang, X. Y.; Kimura, H.; Hou, C. X.; Guo, Z. H. et al. Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv. Compos. Hybrid. Mater. 2021, 4, 906–924.

[2]

Gogotsi, Y.; Simon, P. True performance metrics in electrochemical energy storage. Science 2011, 334, 917–918.

[3]

Wang, Y. G.; Song, Y. F.; Xia, Y. Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950.

[4]

Lu, X. H.; Yu, M. H.; Wang, G. M.; Tong, Y. X.; Li, Y. Flexible solid-state supercapacitors: Design, fabrication and applications. Energy Environ. Sci. 2014, 7, 2160–2181.

[5]

Yi, F.; Ren, H. Y.; Shan, J. Y.; Sun, X.; Wei, D.; Liu, Z. F. Wearable energy sources based on 2D materials. Chem. Soc. Rev. 2018, 47, 3152–3188.

[6]

Chen, C. J.; Zhang, Y.; Li, Y. J.; Dai, J. Q.; Song, J. W.; Yao, Y. G.; Gong, Y. H.; Kierzewski, I.; Xie, J.; Hu, L. B. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 2017, 10, 538–545.

[7]

Wang, R. H.; Xu, C. H.; Lee, J. M. High performance asymmetric supercapacitors: New NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels. Nano Energy 2016, 19, 210–221.

[8]

Dang, C. C.; Mu, Q.; Xie, X. B.; Sun, X. Q.; Yang, X. Y.; Zhang, Y. P.; Maganti, S.; Huang, M. N.; Jiang, Q. L.; Seok, I. et al. Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: A review. Adv. Compos. Hybrid. Mater. 2022, 5, 606–626.

[9]

Yuan, H.; Wang, G.; Zhao, Y. X.; Liu, Y.; Wu, Y.; Zhang, Y. G. A stretchable, asymmetric, coaxial fiber-shaped supercapacitor for wearable electronics. Nano Res. 2020, 13, 1686–1692.

[10]

Qi, G. Y.; Liu, Y.; Chen, L. L.; Xie, P. T.; Pan, D.; Shi, Z. C.; Quan, B.; Zhong, Y. M.; Liu, C. Z.; Fan, R. H. et al. Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv. Compos. Hybrid. Mater. 2021, 4, 1226–1238.

[11]

Tie, D.; Huang, S. F.; Wang, J.; Ma, J. M.; Zhang, J. J.; Zhao, Y. F. Hybrid energy storage devices: Advanced electrode materials and matching principles. Energy Storage Mater. 2019, 21, 22–40.

[12]

Chen, L. F.; Huang, Z. H.; Liang, H. W.; Guan, Q. F.; Yu, S. H. Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: An asymmetric supercapacitor with high energy and power density. Adv. Mater. 2013, 25, 4746–4752.

[13]

Choudhary, N.; Li, C.; Moore, J.; Nagaiah, N.; Zhai, L.; Jung, Y.; Thomas, J. Asymmetric supercapacitor electrodes and devices. Adv. Mater. 2017, 29, 1605336.

[14]

Hou, C. X.; Yang, W. Y.; Kimura, H.; Xie, X. B.; Zhang, X. Y.; Sun, X. Q.; Yu, Z. P.; Yang, X. Y.; Zhang, Y. P.; Wang, B. et al. Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J. Mater. Sci. Technol. 2023, 142, 185–195.

[15]

Ahmed, F. B. M.; Khalafallah, D.; Zhi, M. J.; Hong, Z. L. Porous nanoframes of sulfurized NiAl layered double hydroxides and ternary bismuth cerium sulfide for supercapacitor electrodes. Adv. Compos. Hybrid. Mater. 2022, 5, 2500–2514.

[16]

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

[17]

Zhang, J. Z.; Seyedin, S.; Gu, Z. J.; Yang, W. R.; Wang, X. G.; Razal, J. M. MXene: A potential candidate for yarn supercapacitors. Nanoscale 2017, 9, 18604–18608.

[18]

Hantanasirisakul, K.; Gogotsi, Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 2018, 30, 1804779.

[19]

Shekhirev, M.; Shuck, C. E.; Sarycheva, A.; Gogotsi, Y. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Prog. Mater Sci. 2021, 120, 100757.

[20]
Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater., in press, https://doi.org/10.1002/adma.202211642.
[21]

Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.

[22]

Shao, L.; Xu, J. J.; Ma, J. Z.; Zhai, B. Y.; Li, Y.; Xu, R.; Ma, Z. L.; Zhang, G. H.; Wang, C. Y.; Qiu, J. H. MXene/RGO composite aerogels with light and high-strength for supercapacitor electrode materials. Compos. Commun. 2020, 19, 108–113.

[23]

Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. Acs Nano 2018, 12, 4583–4593.

[24]

Shao, Y. M.; Zhu, Y.; Zheng, R.; Wang, P.; Zhao, Z. Z.; An, J. Highly sensitive and selective surface molecularly imprinted polymer electrochemical sensor prepared by Au and MXene modified glassy carbon electrode for efficient detection of tetrabromobisphenol A in water. Adv. Compos. Hybrid Mater. 2022, 5, 3104–3116.

[25]

Xie, X. Q.; Zhao, M. Q.; Anasori, B.; Maleski, K.; Ren, C. E.; Li, J. W.; Byles, B. W.; Pomerantseva, E.; Wang, G. X.; Gogotsi, Y. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 2016, 26, 513–523.

[26]

Du, Y. T.; Kan, X.; Yang, F.; Gan, L. Y.; Schwingenschlögl, U. MXene/graphene heterostructures as high-performance electrodes for Li-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 32867–32873.

[27]

Zhang, Y. Z.; Cao, Z. J.; Liu, S. J.; Du, Z. G.; Cui, Y. L. S.; Gu, J. N.; Shi, Y. Z.; Li, B.; Yang, S. B. Charge-enriched strategy based on MXene-based polypyrrole layers toward dendrite-free zinc metal anodes. Adv. Energy Mater. 2022, 12, 2103979.

[28]

Liang, Y.; Wei, Z.; Zhang, X. Y.; Wang R. G. Fabrication of vanadium oxide@polypyyrole (V2O5@PPy) core−shell nanofiber electrode for supercapacitor. ES Energy Environ. 2022, 18, 101–110.

[29]

Li, B.; Guo, M. H.; Chen, X. Q.; Miao, Y. Y. Hydrothermally synthesized N and S co-doped mesoporous carbon microspheres from poplar powder for supercapacitors with enhanced performance. Adv. Compos. Hybrid. Mater. 2022, 5, 2306–2316.

[30]

Chen, W. S.; Yu, H. P.; Lee, S. Y.; Wei, T.; Li, J.; Fan, Z. J. Nanocellulose: A promising nanomaterial for advanced electrochemical energy storage. Chem. Soc. Rev. 2018, 47, 2837–2872.

[31]

Sun, Z.; Qi, H. J.; Chen, M. H.; Guo, S. T.; Huang, Z. H.; Maganti, S.; Murugadoss, V.; Huang, M. N.; Guo, Z. H. Progress in cellulose/carbon nanotube composite flexible electrodes for supercapacitors. Eng. Sci. 2022, 18, 59–74.

[32]

Tian, W. Q.; VahidMohammadi, A.; Reid, M. S.; Wang, Z.; Ouyang, L. Q.; Erlandsson, J.; Pettersson, T.; Wågberg, L.; Beidaghi, M.; Hamedi, M. M. Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv. Mater. 2019, 31, 1902977.

[33]

Yang, W. Y.; Peng, D. N.; Kimura, H.; Zhang, X. Y.; Sun, X. Q.; Pashameah, R. A.; Alzahrani, E.; Wang, B.; Guo, Z. H.; Du, W. et al. Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv. Compos. Hybrid. Mater. 2022, 5, 3146–3157.

[34]

Hu, M. M.; Cui, C.; Shi, C.; Wu, Z. S.; Yang, J. X.; Cheng, R. F.; Guang, T. J.; Wang, H. L.; Lu, H. X.; Wang, X. H. High-energy-density hydrogen-ion-rocking-chair hybrid supercapacitors based on Ti3C2Tx MXene and carbon nanotubes mediated by redox active molecule. ACS Nano 2019, 13, 6899–6905.

[35]

Feng, J. X.; Ding, L. X.; Ye, S. H.; He, X. J.; Xu, H.; Tong, Y. X.; Li, G. R. Co(OH)2@PANI hybrid nanosheets with 3D networks as high-performance electrocatalysts for hydrogen evolution reaction. Adv. Mater. 2015, 27, 7051–7057.

[36]

Miao, F. J.; Shao, C. L.; Li, X. H.; Wang, K. X.; Lu, N.; Liu, Y. C. Electrospun carbon nanofibers/carbon nanotubes/polyaniline ternary composites with enhanced electrochemical performance for flexible solid-state supercapacitors. ACS Sustainable Chem. Eng. 2016, 4, 1689–1696.

[37]

Li, Y.; Kamdem, P.; Jin, X. J. Hierarchical architecture of MXene/PANI hybrid electrode for advanced asymmetric supercapacitors. J. Alloys Compd. 2021, 850, 156608.

[38]

Ahirrao, D. J.; Mohanapriya, K.; Wilson, H. M.; Jha, N. Solar reduced porous graphene incorporated within polyaniline network for high-performance supercapacitor electrode. Appl. Surf. Sci. 2020, 510, 145485.

[39]

Zhou, J. H.; Kang, Q.; Xu, S. C.; Li, X. G.; Liu, C.; Ni, L.; Chen, N. N.; Lu, C. L.; Wang, X. Z.; Peng, L. M. et al. Ultrahigh rate capability of 1D/2D polyaniline/titanium carbide (MXene) nanohybrid for advanced asymmetric supercapacitors. Nano Res. 2022, 15, 285–295.

[40]

Shang, T. X.; Lin, Z. F.; Qi, C. S.; Liu, X. C.; Li, P.; Tao, Y.; Wu, Z. T.; Li, D. W.; Simon, P.; Yang, Q. H. 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 2019, 29, 1903960.

[41]

Ko, Y.; Kwon, M.; Bae, W. K.; Lee, B.; Lee, S. W.; Cho, J. Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat. Commun. 2017, 8, 536.

[42]

Lu, X. J.; Dou, H.; Yang, S. D.; Hao, L.; Zhang, L. J.; Shen, L. F.; Zhang, F.; Zhang, X. G. Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film. Electrochim. Acta 2011, 56, 9224–9232.

[43]

Ahirrao, D. J.; Pal, A. K.; Singh, V.; Jha, N. Nanostructured porous polyaniline (PANI) coated carbon cloth (CC) as electrodes for flexible supercapacitor device. J. Mater. Sci. Technol. 2021, 88, 168–182.

[44]

Zhou, G. Q.; Li, M. C.; Liu, C. Z.; Wu, Q. L.; Mei, C. T. 3D printed Ti3C2Tx MXene/cellulose nanofiber architectures for solid-state supercapacitors: Ink rheology, 3D printability, and electrochemical performance. Adv. Funct. Mater. 2022, 32, 2109593.

[45]

Wan, S. J.; Li, X.; Wang, Y. L.; Chen, Y.; Xie, X.; Yang, R.; Tomsia, A. P.; Jiang, L.; Cheng, Q. F. Strong sequentially bridged MXene sheets. Proc. Natl. Acad. Sci. USA 2020, 117, 27154–27161.

[46]

Ma, Z. L.; Kang, S. L.; Ma, J. Z.; Shao, L.; Wei, A. J.; Liang, C. B.; Gu, J. W.; Yang, B.; Dong, D. D.; Wei, L. F. et al. High-performance and rapid-response electrical heaters based on ultraflexible, heat-resistant, and mechanically strong aramid nanofiber/Ag nanowire nanocomposite papers. ACS Nano 2019, 13, 7578–7590.

[47]

Zhou, B.; Zhang, Z.; Li, Y. L.; Han, G. J.; Feng, Y. Z.; Wang, B.; Zhang, D. B.; Ma, J. M.; Liu, C. T. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl. Mater. Interfaces 2020, 12, 4895–4905.

[48]

Das, P.; Wu, Z. S. MXene for energy storage: Present status and future perspectives. J. Phys. Energy 2020, 2, 032004.

[49]

Zhang, Z. M.; Wei, Z. X.; Wan, M. X. Nanostructures of polyaniline doped with inorganic acids. Macromolecules 2002, 35, 5937–5942.

[50]

Xie, W. H.; Yao, F. C.; Gu, H. B.; Du, A.; Lei, Q.; Naik, N.; Guo, Z. H. Magnetoresistive and piezoresistive polyaniline nanoarrays in-situ polymerized surrounding magnetic graphene aerogel. Adv. Compos. Hybrid. Mater. 2022, 5, 1003–1016.

[51]

Ahirrao, D. J.; Jha, N. Comparative study on the electrosorption properties of carbon fabric, functionalized multiwall carbon nanotubes and solar-reduced graphene oxide for flow through electrode based desalination studies. Carbon 2019, 152, 837–850.

[52]

Ansari, M. O.; Ansari, S. P.; Yadav, S. K.; Anwer, T.; Cho, M. H.; Mohammad, F. Ammonia vapor sensing and electrical properties of fibrous multi-walled carbon nanotube/polyaniline nanocomposites prepared in presence of cetyl-trimethylammonium bromide. J. Ind. Eng. Chem. 2014, 20, 2010–2017.

[53]

Wu, D.; Yu, C. Y.; Zhong, W. B. Bioinspired strengthening and toughening of carbon nanotube@polyaniline/graphene film using electroactive biomass as glue for flexible supercapacitors with high rate performance and volumetric capacitance, and low-temperature tolerance. J. Mater. Chem. A 2021, 9, 18356–18368.

[54]

Yoon, S. B.; Yoon, E. H.; Kim, K. B. Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-wall carbon nanotube nanocomposites for supercapacitor applications. J. Power Sources 2011, 196, 10791–10797.

[55]

Korent, A.; Soderžnik, K. Ž.; Šturm, S.; Rožman, K. Z. A correlative study of polyaniline electropolymerization and its electrochromic behavior. J. Electrochem. Soc. 2020, 167, 106504.

[56]

Zhong, M.; Song, Y.; Li, Y. F.; Ma, C.; Zhai, X. L.; Shi, J. L.; Guo, Q. G.; Liu, L. Effect of reduced graphene oxide on the properties of an activated carbon cloth/polyaniline flexible electrode for supercapacitor application. J. Power Sources 2012, 217, 6–12.

[57]

Hosseini, M. G.; Shahryari, E. A novel high-performance supercapacitor based on chitosan/graphene oxide-MWCNT/polyaniline. J. Colloid Interface Sci. 2017, 496, 371–381.

[58]

Zhou, Q. Q.; Li, Y. R.; Huang, L.; Li, C.; Shi, G. Q. Three-dimensional porous graphene/polyaniline composites for high-rate electrochemical capacitors. J. Mater. Chem. A 2014, 2, 17489–17494.

[59]

Kulkarni, S. B.; Patil, U. M.; Shackery, I.; Sohn, J. S.; Lee, S.; Park, B.; Jun, S. High-performance supercapacitor electrode based on a polyaniline nanofibers/3D graphene framework as an efficient charge transporter. J. Mater. Chem. A 2014, 2, 4989–4998.

[60]

Xing, J.; Liao, M. Y.; Zhang, C.; Yin, M.; Li, D. D.; Song, Y. The effect of anions on the electrochemical properties of polyaniline for supercapacitors. Phys. Chem. Chem. Phys. 2017, 19, 14030–14041.

[61]

Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 2013, 6, 1185–1191.

[62]

Luo, H.; Wang, B.; Wang, F.; Yang, J.; Wu, F. D.; Ning, Y.; Zhou, Y.; Wang, D. L.; Liu, H. K.; Dou, S. X. Anodic oxidation strategy toward structure-optimized V2O3 cathode via electrolyte regulation for Zn-ion storage. ACS Nano 2020, 14, 7328–7337.

[63]

Pu, L. Y.; Zhang, J. X.; Jiresse, N. K. L.; Gao, Y. F.; Zhou, H. J.; Naik, N.; Gao, P.; Guo, Z. H. N-doped MXene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Adv. Compos. Hybrid. Mater. 2022, 5, 356–369.

[64]

Pan, Z. H.; Cao, F.; Hu, X.; Ji, X. H. A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors. J. Mater. Chem. A 2019, 7, 8984–8992.

[65]

Jiang, Q.; Kurra, N.; Alhabeb, M.; Gogotsi, Y.; Alshareef, H. N. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 2018, 8, 1703043.

[66]

Boota, M.; Gogotsi, Y. MXene-conducting polymer asymmetric pseudocapacitors. Adv. Energy Mater. 2019, 9, 1802917.

[67]

Wang, X. W.; Zhang, D. Z.; Zhang, H. B.; Gong, L. K.; Yang, Y.; Zhao, W. H.; Yu, S. J.; Yin, Y. D.; Sun, D. F. In situ polymerized polyaniline/MXene (V2C) as building blocks of supercapacitor and ammonia sensor self-powered by electromagnetic-triboelectric hybrid generator. Nano Energy 2021, 88, 106242.

[68]

Boota, M.; Becuwe, M.; Gogotsi, Y. Phenothiazine-MXene aqueous asymmetric pseudocapacitors. ACS Appl. Energy Mater. 2020, 3, 3144–3149.

[69]

Navarro-Suárez, A. M.; Van Aken, K. L.; Mathis, T.; Makaryan, T.; Yan, J.; Carretero-González, J.; Rojo, T.; Gogotsi, Y. Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes. Electrochim. Acta 2018, 259, 752–761.

[70]

Yan, J.; Ren, C. E.; Maleski, K.; Hatter, C. B.; Anasori, B.; Urbankowski, P.; Sarycheva, A.; Gogotsi, Y. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017, 27, 1701264.

[71]

Wang, X.; Li, H.; Li, H.; Lin, S.; Ding, W.; Zhu, X. G.; Sheng, Z. G.; Wang, H.; Zhu, X. B.; Sun, Y. P. 2D/2D 1T-MoS2/Ti3C2 MXene heterostructure with excellent supercapacitor performance. Adv. Funct. Mater. 2020, 30, 0190302.

[72]

Pan, Z. H.; Ji, X. H. Facile synthesis of nitrogen and oxygen co-doped C@Ti3C2 MXene for high performance symmetric supercapacitors. J. Power Sources 2019, 439, 227068.

[73]

Zhou, H.; Lu, Y.; Wu, F.; Fang, L.; Luo, H. J.; Zhang, Y. X.; Zhou, M. MnO2 nanorods/MXene/CC composite electrode for flexible supercapacitors with enhanced electrochemical performance. J. Alloys Compd. 2019, 802, 259–268.

[74]

Boota, M.; Rajesh, M.; Bécuwe, M. Multi-electron redox asymmetric supercapacitors based on quinone-coupled viologen derivatives and Ti3C2Tx MXene. Mater. Today Energy 2020, 18, 100532.

[75]

Liu, W. F.; Zheng, Y. F.; Zhang, Z.; Zhang, Y. N.; Wu, Y. H.; Gao, H. X.; Su, J.; Gao, Y. H. Ultrahigh gravimetric and volumetric capacitance in Ti3C2Tx MXene negative electrode enabled by surface modification and in-situ intercalation. J. Power Sources 2022, 521, 230965.

[76]

Wu, W. L.; Wang, C. W.; Zhao, C. H.; Wei, D.; Zhu, J. F.; Xu, Y. L. Facile strategy of hollow polyaniline nanotubes supported on Ti3C2-MXene nanosheets for high-performance symmetric supercapacitors. J. Colloid Interface Sci. 2020, 580, 601–613.

Nano Research
Pages 7696-7709
Cite this article:
Bi X, Li M, Zhou G, et al. High-performance flexible all-solid-state asymmetric supercapacitors based on binder-free MXene/cellulose nanofiber anode and carbon cloth/polyaniline cathode. Nano Research, 2023, 16(5): 7696-7709. https://doi.org/10.1007/s12274-023-5586-1
Topics:

1285

Views

134

Downloads

30

Crossref

30

Web of Science

32

Scopus

1

CSCD

Altmetrics

Received: 03 January 2023
Revised: 16 February 2023
Accepted: 16 February 2023
Published: 22 March 2023
© The Author(s) 2023

Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return