AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Continuous synthesis of ultra-fine fiber for wearable mechanoluminescent textile

Shulong Chang1Yuan Deng1Na Li1Lijun Wang1,2Chong-Xin Shan1( )Lin Dong1( )
Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Show Author Information

Graphical Abstract

The mechanoluminescence (ML) composite fibers fabricated by a novel adhere-coating method exhibit smaller outer diameters (120 μm) than previously reported. By tuning the viscosity of the liquid to prevent droplet formation, we obtain continuous ultra-fine fibers with smooth surface structure and superior ML performances, which are promising as wearable devices for self-power displays and human motion detection.

Abstract

Continuous mechanoluminescence (ML) fibers and fiber-woven textiles have the potential to serve as new wearable devices for sensors, healthcare, human–computer interfacing, and Internet of Things. Considering the demands on wearability and adaptability for the ML textiles, it is essential to realize the continuous synthesis of fiber, while maintaining a desired small diameter. Here, we develop a novel adhere-coating method to fabricate ML composite fiber, consisting of a thin polyurethane (PU) core and ZnS:Cu/polydimethylsiloxane (PDMS) shell, with the outer diameter of 120 μm. By diluting PDMS to tune the thickness of liquid coating layer, droplets formation has been effectively prevented. The composite fiber exhibits a smooth surface structure and superior ML performances, including high brightness, excellent flexibility, and stability. In addition, a weft knitting textile fabricated by the continuous ML fiber can be easily delighted by manually stretching, and the ML fibers can emit visible signals upon human motion stimuli when woven into commercial cloth. Such continuous ultra-fine ML fibers are promising as wearable sensing devices for human motion detection and human–machine interactions.

Electronic Supplementary Material

Download File(s)
12274_2023_5587_MOESM1_ESM.pdf (1.5 MB)

References

[1]

Chen, G. R.; Li, Y. Z.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668–3720.

[2]

Xiong, J. Q.; Chen, J.; Lee, P. S. Functional fibers and fabrics for soft robotics, wearables, and human–robot interface. Adv. Mater. 2021, 33, 2002640.

[3]

Shi, X.; Zuo, Y.; Zhai, P.; Shen, J. H.; Yang, Y. Y. W.; Gao, Z.; Liao, M.; Wu, J. X.; Wang, J. W.; Xu, X. J. et al. Large-area display textiles integrated with functional systems. Nature 2021, 591, 240–245.

[4]

Yan, W.; Noel, G.; Loke, G.; Meiklejohn, E.; Khudiyev, T.; Marion, J.; Rui, G. C.; Lin, J. N.; Cherston, J.; Sahasrabudhe, A. et al. Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 2022, 603, 616–623.

[5]

He, J. Q.; Lu, C. H.; Jiang, H. B.; Han, F.; Shi, X.; Wu, J. X.; Wang, L. Y.; Chen, T. Q.; Wang, J. J.; Zhang, Y. et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 2021, 597, 57–63.

[6]

Dong, K.; Peng, X.; Cheng, R. W.; Ning, C.; Jiang, Y.; Zhang, Y. H.; Wang, Z. L. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Adv. Mater. 2022, 34, 2109355.

[7]

Wang, H. M.; Zhang, Y.; Liang, X. P.; Zhang, Y. Y. Smart fibers and textiles for personal health management. ACS Nano 2021, 15, 12497–12508.

[8]

Libanori, A.; Chen, G. R.; Zhao, X.; Zhou, Y. H.; Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 2022, 5, 142–156.

[9]

Zhuang, Y. X.; Xie, R. J. Mechanoluminescence rebrightening the prospects of stress sensing: A review. Adv. Mater. 2021, 33, 2005925.

[10]

Zhang, J. C.; Wang, X. S.; Marriott, G.; Xu, C. N. Trap-controlled mechanoluminescent materials. Prog. Mater. Sci. 2019, 103, 678–742.

[11]

Wang, X. D.; Zhang, H. L.; Yu, R. M.; Dong, L.; Peng, D. F.; Zhang, A. H.; Zhang, Y.; Liu, H.; Pan, C. F.; Wang, Z. L. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv. Mater. 2015, 27, 2324–2331.

[12]

Liao, M.; Wang, C.; Hong, Y.; Zhang, Y. F.; Cheng, X. L.; Sun, H.; Huang, X. L.; Ye, L.; Wu, J. X.; Shi, X. et al. Industrial scale production of fibre batteries by a solution-extrusion method. Nat. Nanotechnol. 2022, 17, 372–377.

[13]

Wang, L.; Fu, X. M.; He, J. Q.; Shi, X.; Chen, T. Q.; Chen, P. N.; Wang, B. J.; Peng, H. S. Application challenges in fiber and textile electronics. Adv. Mater. 2020, 32, 1901971.

[14]

Xiong, P. X.; Peng, M. Y.; Yang, Z. M. Near-infrared mechanoluminescence crystals: A review. iScience 2021, 24, 101944.

[15]

Ning, J. J.; Zheng, Y. T.; Ren, Y. T.; Li, L. P.; Shi, X. Q.; Peng, D. F.; Yang, Y. M. MgF2:Mn2+: Novel material with mechanically-induced luminescence. Sci. Bull. 2022, 67, 707–715.

[16]

Peng, D. F.; Jiang, Y.; Huang, B. L.; Du, Y. Y.; Zhao, J. X.; Zhang, X.; Ma, R. H.; Golovynskyi, S.; Chen, B.; Wang, F. A ZnS/CaZnOS heterojunction for efficient mechanical-to-optical energy conversion by conduction band offset. Adv. Mater. 2020, 32, 1907747.

[17]

Li, C. H.; He, Q. G.; Wang, Y.; Wang, Z. J.; Wang, Z. J.; Annapooranan, R.; Latz, M. I.; Cai, S. Q. Highly robust and soft biohybrid mechanoluminescence for optical signaling and illumination. Nat. Commun. 2022, 13, 3914.

[18]

Deng, Y.; Wei, J. Y.; Sun, J. L.; Zhang, Y. A.; Dong, L.; Shan, C. X. Enhancing the mechanoluminescence of traditional ZnS:Mn phosphors via Li+ co-doping. J. Lumin. 2020, 225, 117364.

[19]

Du, Y. Y.; Jiang, Y.; Sun, T. Y.; Zhao, J. X.; Huang, B. L.; Peng, D. F.; Wang, F. Mechanically excited multicolor luminescence in lanthanide ions. Adv. Mater. 2019, 31, 1807062.

[20]

Qasem, A.; Xiong, P. X.; Ma, Z. J.; Peng, M. Y.; Yang, Z. M. Recent advances in mechanoluminescence of doped zinc sulfides. Laser Photonics Rev. 2021, 15, 2100276.

[21]

Park, H. J.; Kim, S.; Lee, J. H.; Kim, H. T.; Seung, W.; Son, Y.; Kim, T. Y.; Khan, U.; Park, N. M.; Kim, S. W. Self-powered motion-driven triboelectric electroluminescence textile system. ACS Appl. Mater. Interfaces 2019, 11, 5200–5207.

[22]

Zhang, J.; Bao, L. K.; Lou, H. Q.; Deng, J.; Chen, A.; Hu, Y. J.; Zhang, Z. T.; Sun, X. M.; Peng, H. S. Flexible and stretchable mechanoluminescent fiber and fabric. J. Mater. Chem. C 2017, 5, 8027–8032.

[23]

Ye, C.; Ren, J.; Wang, Y. L.; Zhang, W. W.; Qian, C.; Han, J.; Zhang, C. X.; Jin, K.; Buehler, M. J.; Kaplan, D. L. et al. Design and fabrication of silk templated electronic yarns and applications in multifunctional textiles. Matter 2019, 1, 1411–1425.

[24]

Gao, Y. Y.; Li, Z. H.; Xu, B. G.; Li, M. Q.; Jiang, C. H. Z.; Guan, X. Y.; Yang, Y. J. Scalable core-spun coating yarn-based triboelectric nanogenerators with hierarchical structure for wearable energy harvesting and sensing via continuous manufacturing. Nano Energy 2022, 91, 106672.

[25]

Fan, H. W.; Li, K. R.; Liu, X. L.; Xu, K. X.; Su, Y.; Hou, C. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z. Continuously processed, long electrochromic fibers with multi-environmental stability. ACS Appl. Mater. Interfaces 2020, 12, 28451–28460.

[26]

Wang, C. F.; Wang, C. H.; Huang, Z. L.; Xu, S. Materials and structures toward soft electronics. Adv. Mater. 2018, 30, 1801368.

[27]

Zhang, Z. T.; Wang, W. C.; Jiang, Y. W.; Wang, Y. X.; Wu, Y. L.; Lai, J. C.; Niu, S. M.; Xu, C. Y.; Shih, C. C.; Wang, C. et al. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 2022, 603, 624–630.

[28]

Niu, S. M.; Matsuhisa, N.; Beker, L.; Li, J. X.; Wang, S. H.; Wang, J. C.; Jiang, Y. W.; Yan, X. Z.; Yun, Y.; Burnett, W. et al. A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2019, 2, 361–368.

[29]

Choi, H. W.; Shin, D. W.; Yang, J. J.; Lee, S.; Figueiredo, C.; Sinopoli, S.; Ullrich, K.; Jovančić, P.; Marrani, A.; Momentè, R. et al. Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nat. Commun. 2022, 13, 814.

[30]

Kwon, S.; Hwang, Y. H.; Nam, M.; Chae, H.; Lee, H. S.; Jeon, Y.; Lee, S.; Kim, C. Y.; Choi, S.; Jeong, E. G. et al. Recent progress of fiber shaped lighting devices for smart display applications-a fibertronic perspective. Adv. Mater. 2020, 32, 1903488.

[31]
Gennes, P.; Brochard-Wyart, F.; Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves; Springer: Berlin, 2004.
[32]

Wang, Y.; Ren, J.; Ye, C.; Pei, Y.; Ling, S. J. Thermochromic silks for temperature management and dynamic textile displays. Nano-Micro Lett. 2021, 13, 72.

[33]

He, M.; Du, W. W.; Feng, Y. M.; Li, S. J.; Wang, W.; Zhang, X.; Yu, A. F.; Wan, L. Y.; Zhai, J. Y. Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring. Nano Energy 2021, 86, 106058.

[34]

Liang, H. H.; He, Y. C.; Chen, M. H.; Jiang, L. C.; Zhang, Z. S.; Heng, X. B.; Yang, L.; Hao, Y. P.; Wei, X. M.; Gan, J. L. et al. Self-powered stretchable mechanoluminescent optical fiber strain sensor. Adv. Intell. Syst. 2021, 3, 2100035.

[35]

Yang, W. F.; Gong, W.; Gu, W.; Liu, Z. X.; Hou, C. Y.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Self-powered interactive fiber electronics with visual-digital synergies. Adv. Mater. 2021, 33, 2104681.

[36]

Jeong, S. M.; Song, S.; Seo, H. J.; Choi, W. M.; Hwang, S. H.; Lee, S. G.; Lim, S. K. Battery-free, human-motion-powered light-emitting fabric: Mechanoluminescent textile. Adv. Sustainable Syst. 2017, 1, 1700126.

[37]

Mead-Hunter, R.; King, A. J. C.; Mullins, B. J. Plateau Rayleigh instability simulation. Langmuir 2012, 28, 6731–6735.

[38]

Hou, B.; Yi, L. Y.; Li, C.; Zhao, H.; Zhang, R.; Zhou, B.; Liu, X. G. An interactive mouthguard based on mechanoluminescence-powered optical fibre sensors for bite-controlled device operation. Nat. Electron. 2022, 5, 682–693.

[39]

Wu, Y. Y.; Mechael, S. S.; Carmichael, T. B. Wearable e-textiles using a textile-centric design approach. Acc. Chem. Res. 2021, 54, 4051–4064.

Nano Research
Pages 9379-9386
Cite this article:
Chang S, Deng Y, Li N, et al. Continuous synthesis of ultra-fine fiber for wearable mechanoluminescent textile. Nano Research, 2023, 16(7): 9379-9386. https://doi.org/10.1007/s12274-023-5587-0
Topics:

811

Views

15

Crossref

15

Web of Science

14

Scopus

1

CSCD

Altmetrics

Received: 06 January 2023
Revised: 07 February 2023
Accepted: 17 February 2023
Published: 31 March 2023
© Tsinghua University Press 2023
Return