AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ru-based catalysts for efficient CO2 methanation: Synergistic catalysis between oxygen vacancies and basic sites

Chunfen Wang1,§Yonglian Lu1,§Yu Zhang1( )Hui Fu1Shuzhuang Sun2Feng Li1Zhiyao Duan3Zhen Liu1Chunfei Wu2Youhe Wang1( )Hongman Sun1( )Zifeng Yan1
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT7 1NN, UK
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China

§ Chunfen Wang and Yonglian Lu contributed equally to this work.

Show Author Information

Graphical Abstract

The formate formation step dominated the hydrogenation route on Ru/CeO2 catalyst, and the b-HCOO* could be the key intermediate due to b-HCOO* is more easily hydrogenated to methane than m-HCOO*.

Abstract

The fundamental insights of the reaction mechanism, especially the synergistic effect between oxygen vacancies and basic sites, are highly promising yet challenging for Ru-based catalysts during carbon dioxide (CO2) methanation. Herein, a series of Ru-based catalysts were employed to study the mechanism of CO2 methanation. It is found that Ru/CeO2 catalyst exhibits a much higher CO2 conversion (86%) and CH4 selectivity (100%), as well as excellent stability of 30 h due to the existence of abundant oxygen vacancies and weak basic sites. Additionally, the in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations reveal that the formate formation step dominated the hydrogenation route on Ru/CeO2 catalyst, and the b-HCOO* could be the key intermediate due to b-HCOO* is more easily hydrogenated to methane than m-HCOO*. The systematic study marks the significance of precise tailoring of the synergistic relationship between oxygen vacancies and basic sites for achieving the desired performance in CO2 methanation.

Electronic Supplementary Material

Download File(s)
12274_2023_5592_MOESM1_ESM.pdf (989.8 KB)

References

[1]

Kamkeng, A. D. N.; Wang, M. H.; Hu, J.; Du, W. L.; Qian, F. Transformation technologies for CO2 utilisation: Current status, challenges and future prospects. Chem. Eng. J. 2021, 409, 128138.

[2]

Sun, H.; Wu, C.; Shen, B.; Zhang, X.; Zhang, Y.; Huang, J. Progress in the development and application of CaO-based adsorbents for CO2 capture-a review. Mater. Today Sustain. 2018, 1–2, 1–27.

[3]

Sun, S. Z.; Lv, Z. Z.; Qiao, Y. T.; Qin, C. L.; Xu, S. J.; Wu, C. F. Integrated CO2 capture and utilization with CaO-alone for high purity syngas production. Carbon Capture Sci. Technol. 2021, 1, 100001.

[4]

Sun, H. M.; Wu, C. F. Autothermal CaO looping biomass gasification for renewable syngas production. Environ. Sci. Technol. 2019, 53, 9298–9305.

[5]

Hu, J. W.; Hongmanorom, P.; Chirawatkul, P.; Kawi, S. Efficient integration of CO2 capture and conversion over a Ni supported CeO2-modified CaO microsphere at moderate temperature. Chem. Eng. J. 2021, 426, 130864.

[6]

Li, Z. H.; Shi, R.; Ma, Y. N.; Zhao, J. Q.; Zhang, T. R. Photodriven CO2 hydrogenation into diverse products: Recent progress and perspective. J. Phys. Chem. Lett. 2022, 13, 5291–5303.

[7]

Sun, H. M.; Wang, J. Q.; Zhao, J. H.; Shen, B. X.; Shi, J.; Huang, J.; Wu, C. F. Dual functional catalytic materials of Ni over Ce-modified CaO sorbents for integrated CO2 capture and conversion. Appl. Catal. B:Environ. 2019, 244, 63–75.

[8]

Qin, Q.; Sun, M. M.; Wu, G. Z.; Dai, L. Emerging of heterostructured materials in CO2 electroreduction: A perspective. Carbon Capture Sci. Technol. 2022, 3, 100043.

[9]

Wang, H. H.; Zhang, S. N.; Zhao, T. J.; Liu, Y. X.; Liu, X.; Su, J.; Li, X. H.; Chen, J. S. Mild and selective hydrogenation of CO2 into formic acid over electron-rich MoC nanocatalysts. Sci. Bull. 2020, 65, 651–657.

[10]

Abdalla, A. M.; Hossain, S.; Nisfindy, O. B.; Azad, A. T.; Dawood, M.; Azad, A. K. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers. Manage. 2018, 165, 602–627.

[11]

Wang, P.; Zhang, X. Y.; Shi, R.; Zhao, J. Q.; Yuan, Z. Y.; Zhang, T. R. Light-driven hydrogen production from steam methane reforming via bimetallic PdNi catalysts derived from layered double hydroxide nanosheets. Energy Fuels 2022, 36, 11627–11635.

[12]

Gorre, J.; Ortloff, F.; Van Leeuwen, C. Production costs for synthetic methane in 2030 and 2050 of an optimized power-to-gas plant with intermediate hydrogen storage. Appl. Energy 2019, 253, 113594.

[13]

Chen, G. B.; Waterhouse, G. I. N.; Shi, R.; Zhao, J. Q.; Li, Z. H.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. From solar energy to fuels: Recent advances in light-driven C1 chemistry. Angew. Chem., Int. Ed. 2019, 58, 17528–17551.

[14]

Italiano, C.; Ferrante, G. D.; Pino, L.; Laganà, M.; Ferraro, M.; Antonucci, V.; Vita, A. Silicon carbide and alumina open-cell foams activated by Ni/CeO2-ZrO2 catalyst for CO2 methanation in a heat-exchanger reactor. Chem. Eng. J. 2022, 434, 134685.

[15]

Shen, L.; Xu, J.; Zhu, M. H.; Han, Y. F. Essential role of the support for nickel-based CO2 methanation catalysts. ACS Catal. 2020, 10, 14581–14591.

[16]

Li, Z. H.; Liu, J. J.; Shi, R.; Waterhouse, G. I. N.; Wen, X. D.; Zhang, T. R. Fe-based catalysts for the direct photohydrogenation of CO2 to value-added hydrocarbons. Adv. Energy Mater. 2021, 11, 2002783.

[17]

Wang, W.; Wang, S. P.; Ma, X. B.; Gong, J. L. Recent advances in catalytichydrogenation of carbon dioxide. Chem. Soc. Rev. 2011, 40, 3703–3727.

[18]

Rui, N.; Zhang, X. S.; Zhang, F.; Liu, Z. Y.; Cao, X. X.; Xie, Z. H.; Zou, R.; Senanayake, S. D.; Yang, Y. H.; Rodriguez, J. A. et al. Highly active Ni/CeO2 catalyst for CO2 methanation: Preparation and characterization. Appl. Catal. B:Environ. 2021, 282, 119581.

[19]

Xu, J. H.; Su, X.; Duan, H. M.; Hou, B. L.; Lin, Q. Q.; Liu, X. Y.; Pan, X. L.; Pei, G. X.; Geng, H. R.; Huang, Y. Q. et al. Influence of pretreatment temperature on catalytic performance of rutile TiO2-supported ruthenium catalyst in CO2 methanation. J. Catal. 2016, 333, 227–237.

[20]

Quindimil, A.; De-La-Torre, U.; Pereda-Ayo, B.; Davó-Quiñonero, A.; Bailón-García, E.; Lozano-Castelló, D.; González-Marcos, J. A.; Bueno-López, A.; González-Velasco, J. R. Effect of metal loading on the CO2 methanation: A comparison between alumina supported Ni and Ru catalysts. Catal. Today 2020, 356, 419–432.

[21]

Cho, E. H.; Park, Y. K.; Park, K. Y.; Song, D.; Koo, K. Y.; Jung, U.; Yoon, W. R.; Ko, C. H. Simultaneous impregnation of Ni and an additive via one-step melt-infiltration: Effect of alkaline-earth metal (Ca, Mg, Sr, and Ba) addition on Ni/γ-Al2O3 for CO2 methanation. Chem. Eng. J. 2022, 428, 131393.

[22]

Guo, X. P.; Peng, Z. J.; Traitangwong, A.; Wang, G.; Xu, H. Y.; Meeyoo, V.; Li, C. S.; Zhang, S. J. Ru nanoparticles stabilized by ionic liquids supported onto silica: Highly active catalysts for low-temperature CO2 methanation. Green Chem. 2018, 20, 4932–4945.

[23]

He, M.; Ji, J.; Liu, B. Y.; Huang, H. B. Reduced TiO2 with tunable oxygen vacancies for catalytic oxidation of formaldehyde at room temperature. Appl. Surf. Sci. 2019, 473, 934–942.

[24]

Sun, H. M.; Wang, Y. H.; Xu, S. J.; Osman, A. I.; Stenning, G.; Han, J. Y.; Sun, S. Z.; Rooney, D.; Williams, P. T.; Wang, F. et al. Understanding the interaction between active sites and sorbents during the integrated carbon capture and utilization process. Fuel 2021, 286, 119308.

[25]

Park, S. J.; Bukhovko, M. P.; Jones, C. W. Integrated capture and conversion of CO2 into methane using NaNO3/MgO + Ru/Al2O3 as a catalytic sorbent. Chem. Eng. J. 2021, 420, 130369.

[26]

Ma, L. X.; Ye, R. P.; Huang, Y. Y.; Reina, T. R.; Wang, X. Y.; Li, C. M.; Zhang, X. L.; Fan, M. H.; Zhang, R. G.; Liu, J. Enhanced low-temperature CO2 methanation performance of Ni/ZrO2 catalysts via a phase engineering strategy. Chem. Eng. J. 2022, 446, 137031.

[27]

Liang, C. F.; Zhang, L. J.; Zheng, Y.; Zhang, S.; Liu, Q.; Gao, G. G.; Dong, D. H.; Wang, Y.; Xu, L. L.; Hu, X. Methanation of CO2 over nickel catalysts: Impacts of acidic/basic sites on formation of the reaction intermediates. Fuel 2020, 262, 116521.

[28]

Pan, Q. S.; Peng, J. X.; Sun, T. J.; Wang, S.; Wang, S. D. Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites. Catal. Commun. 2014, 45, 74–78.

[29]

Wang, F.; He, S.; Chen, H.; Wang, B.; Zheng, L. R.; Wei, M.; Evans, D. G.; Duan, X. Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation. ‎J. Am. Chem. Soc. 2016, 138, 6298–6305.

[30]

Chang, K.; Zhang, H. C.; Cheng, M. J.; Lu, Q. Application of ceria in CO2 conversion catalysis. ACS Catal. 2020, 10, 613–631.

[31]

Dreyer, J. A. H.; Li, P. X.; Zhang, L. H.; Beh, G. K.; Zhang, R. D.; Sit, P. H. L.; Teoh, W. Y. Influence of the oxide support reducibility on the CO2 methanation over Ru-based catalysts. Appl. Catal. B:Environ. 2017, 219, 715–726.

[32]

Tang, Y.; Wei, Y. C.; Wang, Z. Y.; Zhang, S. R.; Li, Y. T.; Nguyen, L.; Li, Y. X.; Zhou, Y.; Shen, W. J.; Tao, F. F. et al. Synergy of single-atom Ni1 and Ru1 sites on CeO2 for dry reforming of CH4. ‎J. Am. Chem. Soc. 2019, 141, 7283–7293.

[33]

Du, Y. X.; Qin, C.; Xu, Y. F.; Xu, D.; Bai, J. Y.; Ma, G. Y.; Ding, M. Y. Ni nanoparticles dispersed on oxygen vacancies-rich CeO2 nanoplates for enhanced low-temperature CO2 methanation performance. Chem. Eng. J. 2021, 418, 129402.

[34]

Lee, S. M.; Lee, Y. H.; Moon, D. H.; Ahn, J. Y.; Nguyen, D. D.; Chang, S. W.; Kim, S. S. Reaction mechanism and catalytic impact of Ni/CeO2−x catalyst for low-temperature CO2 methanation. Ind. Eng. Chem. Res. 2019, 58, 8656–8662.

[35]

Zhang, J. C.; Yang, Y. J.; Liu, J.; Xiong, B. Mechanistic understanding of CO2 hydrogenation to methane over Ni/CeO2 catalyst. Appl. Surf. Sci. 2021, 558, 149866.

[36]

Zhang, X. Y.; You, R.; Li, D.; Cao, T.; Huang, W. X. Reaction sensitivity of ceria morphology effect on Ni/CeO2 catalysis in propane oxidation reactions. ACS Appl. Mater. Interfaces 2017, 9, 35897–35907.

[37]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[38]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[39]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[40]

Sun, H. M.; Zhang, Y.; Guan, S. L.; Huang, J.; Wu, C. F. Direct and highly selective conversion of captured CO2 into methane through integrated carbon capture and utilization over dual functional materials. Util. 2020, 38, 262–272.

[41]

Sakpal, T.; Lefferts, L. Structure-dependent activity of CeO2 supported Ru catalysts for CO2 methanation. J. Catal. 2018, 367, 171–180.

[42]

Huang, H.; Dai, Q. G.; Wang, X. Y. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene. Appl. Catal. B: Environ. 2014, 158–159, 96–105.

[43]

Guo, Y.; Mei, S.; Yuan, K.; Wang, D. J.; Liu, H. C.; Yan, C. H.; Zhang, Y. W. Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect. ACS Catal. 2018, 8, 6203–6215.

[44]

Wang, N.; Qian, W. Z.; Chu, W.; Wei, F. Crystal-plane effect of nanoscale CeO2 on the catalytic performance of Ni/CeO2 catalysts for methane dry reforming. Catal. Sci. Technol. 2016, 6, 3594–3605.

[45]

Dai, Q. G.; Huang, H.; Zhu, Y.; Deng, W.; Bai, S. X.; Wang, X. Y.; Lu, G. Z. Catalysis oxidation of 1,2-dichloroethane and ethyl acetate over ceria nanocrystals with well-defined crystal planes. Appl. Catal. B:Environ. 2012, 117, 360–368.

[46]

Sun, H. M.; Zhang, Y.; Wang, C. F.; Isaacs, M. A.; Osman, A. I.; Wang, Y.; Rooney, D.; Wang, Y. H.; Yan, Z. F.; Parlett, C. M. A. et al. Integrated carbon capture and utilization: Synergistic catalysis between highly dispersed Ni clusters and ceria oxygen vacancies. Chem. Eng. J. 2022, 437, 135394.

[47]

Liu, K.; Sun, Y. B.; Feng, J.; Liu, Y.; Zhu, J.; Han, C. J.; Chen, C. Z.; Bao, T. Y.; Cao, X. Q.; Zhao, X. M. et al. Intensified gas-phase hydrogenation of acetone to isopropanol catalyzed at metal-oxide interfacial sites. Chem. Eng. J. 2023, 454, 140059.

[48]

Li, Z. W.; Li, M.; Ashok, J.; Kawi, S. NiCo@NiCo phyllosilicate@CeO2 hollow core shell catalysts for steam reforming of toluene as biomass tar model compound. Energy Convers. Manage. 2019, 180, 822–830.

[49]

Hu, Z.; Liu, X. F.; Meng, D. M.; Guo, Y.; Guo, Y. L.; Lu, G. Z. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation. ACS Catal. 2016, 6, 2265–2279.

[50]

Liu, Z. Y.; Zhang, F.; Rui, N.; Li, X.; Lin, L. L.; Betancourt, L. E.; Su, D.; Xu, W. Q.; Cen, J. J.; Attenkofer, K. et al. Highly active ceria-supported Ru catalyst for the dry reforming of methane: In situ identification of Ruδ+-Ce3+ interactions for enhanced conversion. ACS Catal. 2019, 9, 3349–3359.

[51]

Cao, X. C.; Long, F.; Zhai, Q. L.; Zhao, J. P.; Xu, J. M.; Jiang, J. C. Heterogeneous Ni and MoOx co-loaded CeO2 catalyst for the hydrogenation of fatty acids to fatty alcohols under mild reaction conditions. Fuel 2021, 298, 120829.

[52]

An, J. H.; Wang, Y. H.; Lu, J. M.; Zhang, J.; Zhang, Z. X.; Xu, S. T.; Liu, X. Y.; Zhang, T.; Gocyla, M.; Heggen, M. et al. Acid-promoter-free ethylene methoxycarbonylation over Ru-clusters/ceria: The catalysis of interfacial Lewis acid-base pair. J. Am. Chem. Soc. 2018, 140, 4172–4181.

[53]

Le, T. A.; Kang, J. K.; Park, E. D. Active Ni/SiO2 catalysts with high Ni content for benzene hydrogenation and CO methanation. Appl. Catal. A Gen. 2019, 581, 67–73.

[54]

Pokrovski, K. A.; Bell, A. T. Effect of dopants on the activity of Cu/M0.3Zr0.7O2 (M = Ce, Mn, and Pr) for CO hydrogenation to methanol. J. Catal. 2006, 244, 43–51.

[55]

Li, C. M.; Chen, K.; Wang, X. Y.; Xue, N.; Yang, H. Q. Understanding the role of Cu/ZnO interaction in CO2 hydrogenation to methanol. Acta Phys. Chim. Sin. 2021, 37, 2009101.

[56]

Xu, L. L.; Wen, X. Y.; Chen, M. D.; Lv, C. F.; Cui, Y.; Wu, X. Y.; Wu, C. E.; Yang, B.; Miao, Z. C.; Hu, X. Mesoporous Ce-Zr solid solutions supported Ni-based catalysts for low-temperature CO2 methanation by tuning the reaction intermediates. Fuel 2020, 282, 118813.

[57]

Garbarino, G.; Bellotti, D.; Finocchio, E.; Magistri, L.; Busca, G. Methanation of carbon dioxide on Ru/Al2O3: Catalytic activity and infrared study. Catal. Today 2016, 277, 21–28.

[58]

Hu, F. Y.; Ye, R. P.; Jin, C. K.; Liu, D.; Chen, X. H.; Li, C.; Lim, K. H.; Song, G. Q.; Wang, T. C.; Feng, G. et al. Ni nanoparticles enclosed in highly mesoporous nanofibers with oxygen vacancies for efficient CO2 methanation. Appl. Catal. B:Environ. 2022, 317, 121715.

[59]

López-Rodríguez, S.; Davó-Quiñonero, A.; Bailón-García, E.; Lozano-Castelló, D.; Herrera, F. C.; Pellegrin, E.; Escudero, C.; García-Melchor, M.; Bueno-López, A. Elucidating the role of the metal catalyst and oxide support in the Ru/CeO2-catalyzed CO2 methanation mechanism. J. Phys. Chem. C 2021, 125, 25533–25544.

[60]

Holmgren, A.; Andersson, B.; Duprez, D. Interactions of CO with Pt/ceria catalysts. Appl. Catal. B:Environ. 1999, 22, 215–230.

[61]

Cárdenas-Arenas, A.; Quindimil, A.; Davó-Quiñonero, A.; Bailón-García, E.; Lozano-Castelló, D.; De-La-Torre, U.; Pereda-Ayo, B.; González-Marcos, J. A.; González-Velasco, J. R.; Bueno-López, A. Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts. Appl. Catal. B:Environ. 2020, 265, 118538.

Nano Research
Pages 12153-12164
Cite this article:
Wang C, Lu Y, Zhang Y, et al. Ru-based catalysts for efficient CO2 methanation: Synergistic catalysis between oxygen vacancies and basic sites. Nano Research, 2023, 16(10): 12153-12164. https://doi.org/10.1007/s12274-023-5592-3
Topics:
Part of a topical collection:

1186

Views

25

Crossref

25

Web of Science

31

Scopus

1

CSCD

Altmetrics

Received: 03 January 2023
Revised: 13 February 2023
Accepted: 19 February 2023
Published: 21 March 2023
© Tsinghua University Press 2023
Return