AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hierarchical porous yolk–shell Co-N-C nanocatalysts encaged in graphene nanopockets for high-performance Zn-air battery

Yisi Liu1( )Zongxu Li1Shizhu Wang2Jinnan Xuan1Dongbin Xiong1Lina Zhou1Jianqing Zhou1Jun Wang1Yahui Yang3( )Yue Du1( )
Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, China
Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
Show Author Information

Graphical Abstract

Hierarchical porous yolk–shell Co-N-C nanocatalysts encaged in graphene nanopockets as an efficient cathode electrocatalyst for Zn-air battery.

Abstract

The rational design and preparation of promising cathode electrocatalysts with excellent activity and strong stability for metal-air batteries is a huge challenge. In this work, we innovate an approach of combining solvothermal with high-temperature pyrolysis utilizing zeolitic imidazolate framework (ZIF)-8 and ZIF-67 as the template to synthesize a novel hybrid material of hierarchical porous yolk–shell Co-N-C polyhedron nanocatalysts engaged in graphene nanopocket (yolk–shell Co-N-C@GNP). The obtained catalyst exhibits prominent bifunctional electrocatalytic performance for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in the alkaline condition, in which the half-wave potential is 0.86 V for ORR, and the over-potential for OER is 0.42 V at 10 mA·cm−2. The rechargeable aqueous Zn-air battery fabricated with yolk–shell Co-N-C@GNP cathode deliveries an open circuit voltage (OCV) of 1.60 V, a peak power density of 236.2 mW·cm−2, and excellent cycling stability over 94 h at 5 mA·cm−2. The quasi-solid-state Zn-air battery (ZAB) using yolk–shell Co-N-C@GNP displays a high OCV of 1.40 V and a small voltage gap of 0.88 V in continuous cycling tests at 2 mA·cm−2. This work provides a valuable thought to focus attention on the design of high-efficient bifunctional catalysts with hierarchical porous yolk–shell framework and high-density metal active sites for metal-air battery technologies.

Electronic Supplementary Material

Download File(s)
12274_2023_5593_MOESM1_ESM.pdf (2.3 MB)
12274_2023_5593_MOESM2_ESM.pdf (13 MB)

References

[1]

Cai, X. Y.; Lai, L. F.; Lin, J. Y.; Shen, Z. X. Recent advances in air electrodes for Zn-air batteries: Electrocatalysis and structural design. Mater. Horiz. 2017, 4, 945–976.

[2]

Li, C. S.; Sun, Y.; Gebert, F.; Chou, S. L. Current progress on rechargeable magnesium-air battery. Adv. Energy Mater. 2017, 7, 1700869.

[3]

Zhang, Y. G.; Deng, Y. P.; Wang, J. Y.; Jiang, Y.; Cui, G. L.; Shui, L. L.; Yu, A. P.; Wang, X.; Chen, Z. W. Recent progress on flexible Zn-air batteries. Energy Storage Mater. 2021, 35, 538–549.

[4]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[5]

Yi, S. J.; Jiang, H.; Bao, X. J.; Zou, S. Q.; Liao, J. J.; Zhang, Z. J. Recent progress of Pt-based catalysts for oxygen reduction reaction in preparation strategies and catalytic mechanism. J. Electroanal. Chem. 2019, 848, 113279.

[6]

Luo, L. X.; Fu, C. H.; Wu, A. M.; Zhuang, Z. C.; Zhu, F. J.; Jiang, F. L.; Shen, S. Y.; Cai, X. Y.; Kang, Q.; Zheng, Z. F. et al. Hydrogen-assisted scalable preparation of ultrathin Pt shells onto surfactant-free and uniform Pd nanoparticles for highly efficient oxygen reduction reaction in practical fuel cells. Nano Res. 2022, 15, 1892–1900.

[7]

Lin, L.; Zhu, Q.; Xu, A. W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 2014, 136, 11027–11033.

[8]

Ai, K. L.; Li, Z. L.; Cui, X. Q. Scalable preparation of sized-controlled Co-N-C electrocatalyst for efficient oxygen reduction reaction. J. Power Sources 2017, 368, 46–56.

[9]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li. J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[10]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[11]

Lin, Q. P.; Bu, X. H.; Kong, A. G.; Mao, C. Y.; Bu, F.; Feng, P. Y. Heterometal-embedded organic conjugate frameworks from alternating monomeric iron and cobalt metalloporphyrins and their application in design of porous carbon catalysts. Adv. Mater. 2015, 27, 3431–3436.

[12]

Lu, G. L.; Zhu, Y. L.; Xu, K. L.; Jin, Y. H.; Ren, Z. J.; Liu, Z. N.; Zhang, W. Metallated porphyrin based porous organic polymers as efficient electrocatalysts. Nanoscale 2015, 7, 18271–18277.

[13]

Lefevre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74.

[14]

Yang, L.; Cheng, D. J.; Xu, H. X.; Zeng, X. F.; Wan, X.; Shui, J. L.; Xiang, Z. H.; Cao, D. P. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proc. Natl. Acad. Sci. USA 2018, 115, 6626–6631.

[15]

Liu, Q. T.; Liu, X. F.; Zheng, L. R.; Shui, J. L. The solid-phase synthesis of an Fe-N-C electrocatalyst for high-power proton-exchange membrane fuel cells. Angew. Chem., Int. Ed. 2018, 57, 1204–1208.

[16]

Jiang, W. J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L. J.; Wang, J. Q.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 2016, 138, 3570–3578.

[17]

Ju, Y. W.; Yoo, S.; Kim, C.; Kim, S.; Jeon, I. Y.; Shin, J.; Baek, J. B.; Kim, G. Fe@N-graphene nanoplatelet-embedded carbon nanofibers as efficient electrocatalysts for oxygen reduction reaction. Adv. Sci. 2016, 3, 1500205.

[18]

Li, J. K.; Ghoshal, S.; Liang, W. T.; Sougrati, M. T.; Jaouen, F.; Halevi, B.; McKinney, S.; McCool, G.; Ma, C. R.; Yuan, X. X. et al. Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction. Energy Environ. Sci. 2016, 9, 2418–2432.

[19]

Guo, J. N.; Lin, C. Y.; Xia, Z. H.; Xiang, Z. H. A pyrolysis-free covalent organic polymer for oxygen reduction. Angew. Chem., Int. Ed. 2018, 57, 12567–12572.

[20]

Tang, H. L.; Cai, S. C.; Xie, S. L.; Wang, Z. B.; Tong, Y. X.; Pan, M.; Lu, X. H. Metal–organic-framework-derived dual metal- and nitrogen-doped carbon as efficient and robust oxygen reduction reaction catalysts for microbial fuel cells. Adv. Sci. 2016, 3, 1500265.

[21]

Shen, K.; Chen, X. D.; Chen, J. Y.; Li, Y. W. Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 2016, 6, 5887–5903.

[22]

Liu, T.; Zhao, P. P.; Hua, X.; Luo, W.; Chen, S. L.; Cheng, G. Z. An Fe-N-C hybrid electrocatalyst derived from a bimetal–organic framework for efficient oxygen reduction. J. Mater. Chem. A 2016, 4, 11357–11364.

[23]

Peera, S. G.; Balamurugan, J.; Kim, N. H.; Lee, J. H. Sustainable synthesis of Co@NC core shell nanostructures from metal organic frameworks via mechanochemical coordination self-assembly: An efficient electrocatalyst for oxygen reduction reaction. Small 2018, 14, e1800441.

[24]

Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

[25]

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

[26]

Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

[27]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[28]

Gadipelli, S.; Zhao, T. T.; Shevlin, S. A.; Guo, Z. X. Switching effective oxygen reduction and evolution performance by controlled graphitization of a cobalt-nitrogen-carbon framework system. Energy Environ. Sci. 2016, 9, 1661–1667.

[29]

Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.; Furukawa, S.; Yamauchi, Y. Thermal conversion of core-shell metal–organic frameworks: A new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 2015, 137, 1572–1580.

[30]

Chen, H. R.; Shen, K.; Mao, Q.; Chen, J. Y.; Li, Y. W. Nanoreactor of MOF-derived yolk–shell Co@C-N: Precisely controllable structure and enhanced catalytic activity. ACS Catal. 2018, 8, 1417–1426.

[31]

Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q. et al. Core–shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618.

[32]

Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.

[33]

Shi, Q.; Chen, Z. F.; Song, Z. W.; Li, J. P.; Dong, J. X. Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors. Angew. Chem., Int. Ed. 2011, 50, 672–675.

[34]

Saliba, D.; Ammar, M.; Rammal, M.; Al-Ghoul, M.; Hmadeh, M. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J. Am. Chem. Soc. 2018, 140, 1812–1823.

[35]

Casiraghi, C.; Ferrari, A. C.; Robertson, J. Raman spectroscopy of hydrogenated amorphous carbons. Phys. Rev. B 2005, 72, 085401.

[36]

Li, S. D.; Zhuang, Z. C.; Xia, L. X.; Zhu, J. X.; Liu, Z. A.; He, R. H.; Luo, W.; Huang, W. Z.; Shi, C. W.; Zhao, Y. et al. Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater. 2023, 66, 160–168.

[37]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[38]

Marco, J. F.; Gancedo, J. R.; Gracia, M.; Gautier, J. L.; Ríos, E.; Berry, F. J. Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: An XRD, XANES, EXAFS, and XPS study. J. Solid State Chem. 2000, 153, 74–81.

[39]

Wang, X. W.; Xi, X. A.; Huo, G.; Xu, C. Y.; Sui, P.; Feng, R. F.; Fu, X. Z.; Luo, J. L. Co- and N-doped carbon nanotubes with hierarchical pores derived from metal–organic nanotubes for oxygen reduction reaction. J. Energy Chem. 2021, 53, 49–55.

[40]

Wang, A. S.; Zhao, C. N.; Yu, M.; Wang, W. C. Trifunctional Co nanoparticle confined in defect-rich nitrogen-doped graphene for rechargeable Zn-air battery with a long lifetime. Appl. Catal. B: Environ. 2021, 281, 119514.

[41]

Choudhury, T.; Saied, S. O.; Sullivan, J. L.; Abbot, A. M. Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bombardment. J. Phys. D: Appl. Phys. 1989, 22, 1185–1195.

[42]

Liu, M. H.; Xu, Q.; Miao, Q. Y.; Yang, S.; Wu, P.; Liu, G. J.; He, J.; Yu, C. B.; Zeng, G. F. Atomic Co-N4 and Co nanoparticles confined in COF@ZIF-67 derived core-shell carbon frameworks: Bifunctional non-precious metal catalysts toward the ORR and HER. J. Mater. Chem. A 2022, 10, 228–233.

[43]

Li, H. X.; Wen, Y. L.; Jiang, M.; Yao, Y.; Zhou, H. H.; Huang, Z. Y.; Li, J. W.; Jiao, S. Q.; Kuang, Y. F.; Luo, S. L. Understanding of neighboring Fe-N4-C and Co-N4-C dual active centers for oxygen reduction reaction. Adv. Funct. Mater. 2021, 31, 2011289.

[44]

Sakaushi, K.; Eckardt, M.; Lyalin, A.; Taketsugu, T.; Behm, R. J.; Uosaki, K. Microscopic electrode processes in the four-electron oxygen reduction on highly active carbon-based electrocatalysts. ACS Catal. 2018, 8, 8162–8176.

[45]

Xing, T.; Zheng, Y.; Li, L. H.; Cowie, B. C. C.; Gunzelmann, D.; Qiao, S. Z.; Huang, S. M.; Chen, Y. Observation of active sites for oxygen reduction reaction on nitrogen-doped multilayer graphene. ACS Nano 2014, 8, 6856–6862.

[46]

Liu, Y. S.; Chen, Z. C.; Li, Z. X.; Zhao, N.; Xie, Y. L.; Du, Y.; Xuan, J. N.; Xiong, D. B.; Zhou, J. Q.; Cai, L. et al. CoNi nanoalloy-Co-N4 composite active sites embedded in hierarchical porous carbon as bi-functional catalysts for flexible Zn-air battery. Nano Energy 2022, 99, 107325.

[47]

Bao, X. B.; Gong, Y. T.; Deng, J.; Wang, S. P.; Wang, Y. Organic-acid-assisted synthesis of a 3D lasagna-like Fe-N-doped CNTs-G framework: An efficient and stable electrocatalyst for oxygen reduction reactions. Nano Res. 2017, 10, 1258–1267.

[48]

Shao, Q.; Li, Y.; Cui, X.; Li, T. J.; Wang, H. G.; Li, Y. H.; Duan, Q.; Si, Z. J. Metallophthalocyanine-based polymer-derived Co2P nanoparticles anchoring on doped graphene as high-efficient trifunctional electrocatalyst for Zn-air batteries and water splitting. ACS Sustainable Chem. Eng. 2020, 8, 6422–6432.

[49]

Ma, Y.; Li, J. T.; Liao, X. B.; Luo, W.; Huang, W. Z.; Meng, J. S.; Chen, Q.; Xi, S. B.; Yu, R. H.; Zhao, Y. et al. Heterostructure design in bimetallic phthalocyanine boosts oxygen reduction reaction activity and durability. Adv. Funct. Mater. 2020, 30, 2005000.

[50]

Yi, J. D.; Xu, R.; Chai, G. L.; Zhang, T.; Zang, K. T.; Nan, B.; Lin, H.; Liang, Y. L.; Lv, J. Q.; Luo, J. et al. Cobalt single-atoms anchored on porphyrinic triazine-based frameworks as bifunctional electrocatalysts for oxygen reduction and hydrogen evolution reactions. J. Mater. Chem. A 2019, 7, 1252–1259.

[51]

Li, Z. L.; Zhuang, Z. C.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M. C.; Zhu, J. X.; Lang, Z. Q.; Feng, S. H.; Chen, W. et al. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 2018, 30, 1803220.

[52]

Wang, Y. Q.; Yu, B. Y.; Liu, K.; Yang, X. T.; Liu, M.; Chan, T. S.; Qiu, X. Q.; Li, J.; Li, W. Z. Co single-atoms on ultrathin N-doped porous carbon via a biomass complexation strategy for high performance metal-air batteries. J. Mater. Chem. A 2020, 8, 2131–2139.

[53]

Liu, M.; Li, N.; Cao, S. F.; Wang, X. M.; Lu, X. Q.; Kong, L. J.; Xu, Y. H.; Bu, X. H. A “pre-constrained metal twins” strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis. Adv. Mater. 2022, 34, e2107421.

[54]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[55]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem. 2023, 135, e202212335.

[56]

Zhang, X.; Truong-Phuoc, L.; Liao, X. M.; Tuci, G.; Fonda, E.; Papaefthymiou, V.; Zafeiratos, S.; Giambastiani, G.; Pronkin, S.; Pham-Huu, C. An open gate for high-density metal ions in N-doped carbon networks: Powering Fe-N-C catalyst efficiency in the oxygen reduction reaction. ACS Catal. 2021, 11, 8915–8928.

[57]

Zhong, H. X.; Ly, K. H.; Wang, M. C.; Krupskaya, Y.; Han, X. C.; Zhang, J. C.; Zhang, J.; Kataev, V.; Büchner, B.; Weidinger, I. M. et al. A phthalocyanine-based layered two-dimensional conjugated metal–organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2019, 58, 10677–10682.

[58]

Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587–5593.

[59]

Jiang, M.; Yang, J.; Ju, J.; Zhang, W.; He, L.; Zhang, J.; Fu, C. P.; Sun, B. D. Space-confined synthesis of CoNi nanoalloy in N-doped porous carbon frameworks as efficient oxygen reduction catalyst for neutral and alkaline aluminum-air batteries. Energy Storage Mater. 2020, 27, 96–108.

Nano Research
Pages 8893-8901
Cite this article:
Liu Y, Li Z, Wang S, et al. Hierarchical porous yolk–shell Co-N-C nanocatalysts encaged in graphene nanopockets for high-performance Zn-air battery. Nano Research, 2023, 16(7): 8893-8901. https://doi.org/10.1007/s12274-023-5593-2
Topics:

2059

Views

21

Crossref

18

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 11 January 2023
Revised: 15 February 2023
Accepted: 19 February 2023
Published: 25 March 2023
© Tsinghua University Press 2023
Return