AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Elucidating the electronic metal–support interaction enhanced hydrogen evolution activity on Ti3C2Tx MXene basal plane by scanning electrochemical microscopy

Sisi Jiang1Tong Sun1( )Chaoqun Gu1Yingfei Ma2Zhenyu Wang1Dengchao Wang2( )Zonghua Wang1( )
College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, China
School of Chemical Sciences, University of Chinese Academy of Science, Beijing 100190, China
Show Author Information

Graphical Abstract

An electronic metal–support interaction (EMSI) effect acting on the supported substrate rather than metal particles was investigated in this work. Detailed scanning electrochemical microscopy and numerical simulations studies indicate that both the charge distribution and hydrogen evolution reaction (HER) activity can be greatly enhanced on the supported Ti3C2Tx MXenes basal plane surrounding the metal (Au) particles.

Abstract

MXene, a family of two-dimensional (2D) transition metal carbides and nitrides, has intriguing electrochemical energy storage and electrocatalysis applications. Introducing the electronic metal–support interaction (EMSI) effect is one effective strategy to optimize the catalytic efficiency for MXene-based composites. However, most of the studies concentrate on optimizing the performance of metals rather than supported substrates by using this strategy. In this work, we mainly investigate the influence of an EMSI effect on the performance of the supported substrate (Ti3C2Tx MXene). Detailed scanning electrochemical microscopy and numerical simulations results reveal that the charge distribution on the Ti3C2Tx basal plane (approximate 100 nm-radius) surrounding Au nanoparticles (20 nm-radius) was significantly enhanced as a result of –O being the majority surface functional group on Ti3C2Tx that was attached to Au nanoparticle, and the related hydrogen evolution reaction (HER) activity was much better than that of the unaffected Ti3C2Tx basal plane, which even can be comparable to that of Au. This finding will be helpful for designing new strategies to enhance the overall catalytic performance of various MXene-based composites.

Electronic Supplementary Material

Download File(s)
12274_2023_5595_MOESM1_ESM.pdf (2.8 MB)
12274_2023_5595_MOESM2_ESM.pdf (565.6 KB)

References

[1]

Duan, Z. X.; Zhao, D. P.; Sun, Y. C.; Tan, X. J.; Wu, X. Bifunctional Fe-doped CoP@Ni2P heteroarchitectures for high-efficient water electrocatalysis. Nano Res. 2022, 15, 8865–8871.

[2]

Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.

[3]

Jiang, J. Z.; Bai, S. S.; Yang, M. Q.; Zou, J.; Li, N.; Peng, J. H.; Wang, H. T.; Xiang, K.; Liu, S.; Zhai, T. Y. Strategic design and fabrication of MXenes-Ti3CNCl2@CoS2 core–shell nanostructure for high-efficiency hydrogen evolution. Nano Res. 2022, 15, 5977–5986.

[4]

Guo, Y. N.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z. L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1807134.

[5]

Niether, C.; Faure, S.; Bordet, A.; Deseure, J.; Chatenet, M.; Carrey, J.; Chaudret, B.; Rouet, A. Improved water electrolysis using magnetic heating of FeC-Ni core–shell nanoparticles. Nat. Energy 2018, 3, 476–483.

[6]

Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.

[7]

Chen, L.; Wang, Y. P.; Zhao, X.; Wang, Y. C.; Li, Q.; Wang, Q. C.; Tang, Y. G.; Lei, Y. P. Trimetallic oxyhydroxides as active sites for large-current-density alkaline oxygen evolution and overall water splitting. J. Mater. Sci. Technol. 2022, 110, 128–135.

[8]

Zhao, X.; Liu, M. J.; Wang, Y. C.; Xiong, Y.; Yang, P. Y.; Qin, J. Q.; Xiong, X.; Lei, Y. P. Designing a built-in electric field for efficient energy electrocatalysis. ACS Nano 2022, 16, 19959–19979.

[9]
Zhang, Z. J.; Zhao, J.; Wu, M. C.; Lu, Q. H.; Liu, R. Three-phase interface induced charge modulation on MoO2/Mo2C-carbon tube for enhanced hydrogen evolution. Nano Res., in press, https://doi.org/10.1007/s12274-022-5140-6.
[10]

Singh, S.; Nguyen, D. C.; Kim, N. H.; Lee, J. H. Interface engineering induced electrocatalytic behavior in core–shelled CNTs@NiP2/NbP heterostructure for highly efficient overall water splitting. Chem. Eng. J. 2022, 442, 136120.

[11]

Ma, S. F.; Qu, X. L.; Huang, J.; Zhang, C.; Chen, G. L.; Chen, W.; Li, T. T.; Shao, T.; Zheng, K.; Tian, J. T. et al. Compositional and crystallographic design of Ni-Co phosphide heterointerfaced nanowires for high-rate, stable hydrogen generation at industry-relevant electrolysis current densities. Nano Energy 2022, 95, 106989.

[12]

Gu, C. Q.; Sun, T.; Wang, Z. Y.; Jiang, S. S.; Wang, Z. H. High resolution electrochemical imaging for sulfur vacancies on 2D molybdenum disulfide. Small Methods 2023, 7, 2201529.

[13]

Ran, J. R.; Gao, G. P.; Li, F. T.; Ma, T. Y.; Du, A. J.; Qiao, S. Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907.

[14]

Bai, W. H.; Zhou, Y.; Peng, G.; Wang, J. N.; Li, A. M.; Corvini, P. F. X. Engineering efficient hole transport layer Ferrihydrite-MXene on BiVO4 photoanodes for photoelectrochemical water splitting: Work function and conductivity regulated. Appl. Catal. B: Environ. 2022, 315, 121606.

[15]

Ramalingam, V.; Varadhan, P.; Fu, H. C.; Kim, H.; Zhang, D. L.; Chen, S. M.; Song, L.; Ma, D.; Wang, Y.; Alshareef, H. N. et al. Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater. 2019, 31, 1903841.

[16]

Wei, Z. H.; Zhang, H. X.; Wang, Z. H. High-intensity focused ultrasound combined with Ti3C2-TiO2 to enhance electrochemiluminescence of luminol for the sensitive detection of polynucleotide kinase. ACS Appl. Mater. Interfaces 2023, 15, 3804–3811.

[17]

Zhang, H. X.; Zhuang, T. T.; Wang, L.; Du, L.; Xia, J. F.; Wang, Z. H. Efficient Au nanocluster@Ti3C2 heterostructure luminophore combined with Cas12a for electrochemiluminescence detection of miRNA. Sens. Actuators B: Chem. 2022, 370, 132428.

[18]

Lin, W. J.; Lu, Y. R.; Peng, W.; Luo, M.; Chan, T. S.; Tan, Y. W. Atomic bridging modulation of Ir-N,S co-doped MXene for accelerating hydrogen evolution. J. Mater. Chem. A 2022, 10, 9878–9885.

[19]

Qiao, S. C.; He, Q.; Zhou, Q.; Zhou, Y. Z.; Xu, W. J.; Shou, H. W.; Cao, Y. Y.; Chen, S. M.; Wu, X. J.; Song, L. Interfacial electronic interaction enabling exposed Pt (110) facets with high specific activity in hydrogen evolution reaction. Nano Res. 2023, 16, 174–180.

[20]

Djire, A.; Wang, X.; Xiao, C. X.; Nwamba, O. C.; Mirkin, M. V.; Neale, N. R. Basal plane hydrogen evolution activity from mixed metal nitride MXenes measured by scanning electrochemical microscopy. Adv. Funct. Mater. 2020, 30, 2001136.

[21]

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal–support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

[22]

Kuang, P. Y.; Wang, Y. R.; Zhu, B. C.; Xia, F. J.; Tung, C. W.; Wu, J. S.; Chen, H. M.; Yu, J. G. Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2-evolution activity. Adv. Mater. 2021, 33, 2008599.

[23]

Lang, R.; Li, T. B.; Matsumura, D.; Miao, S.; Ren, Y. J.; Cui, Y. T.; Tan, Y.; Qiao, B. T.; Li, L.; Wang, A. Q. et al. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew. Chem., Int. Ed. 2016, 55, 16054–16058.

[24]

Abdel-Mageed, A. M.; Wiese, K.; Parlinska-Wojtan, M.; Rabeah, J.; Brückner, A.; Behm, R. J. Encapsulation of Ru nanoparticles: Modifying the reactivity toward CO and CO2 methanation on highly active Ru/TiO2 catalysts. Appl. Catal. B: Environ. 2020, 270, 118846.

[25]

Wang, Q. C.; Feng, Q. G.; Lei, Y. P.; Tang, S. H.; Xu, L.; Xiong, Y.; Fang, G. Z.; Wang, Y. C.; Yang, P. Y.; Liu, J. J. et al. Quasi-solid-state Zn-air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nat. Commun. 2022, 13, 3689.

[26]

Schroeder, V.; Savagatrup, S.; He, M.; Lin, S. B.; Swager, T. M. Carbon nanotube chemical sensors. Chem. Rev. 2019, 119, 599–663.

[27]

Ma, D. R.; Liu, W. Q.; Huang, Y. J.; Xia, D. H.; Lian, Q. Y.; He, C. Enhanced catalytic ozonation for eliminating CH3SH via stable and circular electronic metal–support interactions of Si–O–Mn bonds with low Mn loading. Environ. Sci. Technol. 2022, 56, 3678–3688.

[28]

Kang, L. Q.; Wang, B. L.; Güntner, A. T.; Xu, S. Y.; Wan, X. H.; Liu, Y. Y.; Marlow, S.; Ren, Y. F.; Gianolio, D.; Tang, C. C. et al. The electrophilicity of surface carbon species in the redox reactions of CuO-CeO2 catalysts. Angew. Chem., Int. Ed. 2021, 60, 14420–14428.

[29]

Rao, R. G.; Blume, R.; Hansen, T. W.; Fuentes, E.; Dreyer, K.; Moldovan, S.; Ersen, O.; Hibbitts, D. D.; Chabal, Y. J.; Schlögl, R. et al. Interfacial charge distributions in carbon-supported palladium catalysts. Nat. Commun. 2017, 8, 340.

[30]

Jackson, C.; Smith, G. T.; Inwood, D. W.; Leach, A. S.; Whalley, P. S.; Callisti, M.; Polcar, T.; Russell, A. E.; Levecque, P.; Kramer, D. Electronic metal–support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum. Nat. Commun. 2017, 8, 15802.

[31]

Niu, H. J.; Yan, Y.; Jiang, S. S.; Liu, T.; Sun, T.; Zhou, W.; Guo, L.; Li, J. H. Interfaces decrease the alkaline hydrogen-evolution kinetics energy barrier on NiCoP/Ti3C2Tx MXene. ACS Nano 2022, 16, 11049–11058.

[32]

Sun, T.; Zhang, H. Y.; Wang, X.; Liu, J.; Xiao, C. X.; Nanayakkara, S. U.; Blackburn, J. L.; Mirkin, M. V.; Miller, E. M. Nanoscale mapping of hydrogen evolution on metallic and semiconducting MoS2 nanosheets. Nanoscale Horiz. 2019, 4, 619–624.

[33]

Bentley, C. L.; Kang, M.; Maddar, F. M.; Li, F. W.; Walker, M.; Zhang, J.; Unwin, P. R. Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): Basal vs. edge plane activity. Chem. Sci. 2017, 8, 6583–6593.

[34]

Sun, T.; Wang, D. C.; Mirkin, M. V.; Cheng, H.; Zheng, J. C.; Richards, R. M.; Lin, F.; Xin, H. L. Direct high-resolution mapping of electrocatalytic activity of semi-two-dimensional catalysts with single-edge sensitivity. Proc. Natl. Acad. Sci. USA 2019, 116, 11618–11623.

[35]

Kolagatla, S.; Subramanian, P.; Schechter, A. Catalytic current mapping of oxygen reduction on isolated Pt particles by atomic force microscopy-scanning electrochemical microscopy. Appl. Catal. B: Environ. 2019, 256, 117843.

[36]

Choi, M.; Siepser, N. P.; Jeong, S.; Wang, Y.; Jagdale, G.; Ye, X. C.; Baker, L. A. Probing single-particle electrocatalytic activity at facet-controlled gold nanocrystals. Nano Lett. 2020, 20, 1233–1239.

[37]

Sun, T.; Yu, Y.; Zacher, B. J.; Mirkin, M. V. Scanning electrochemical microscopy of individual catalytic nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 14120–14123.

[38]

Rao, R. G.; Blume, R.; Greiner, M. T.; Liu, P.; Hansen, T. W.; Dreyer, K. S.; Hibbitts, D. D.; Tessonnier, J. P. Oxygen-doped carbon supports modulate the hydrogenation activity of palladium nanoparticles through electronic metal–support interactions. ACS Catal. 2022, 12, 7344–7356.

[39]

Liu, L. J.; Zhao, Q.; Liu, R.; Zhu, L. F. Hydrogen adsorption-induced catalytic enhancement over Cu nanoparticles immobilized by layered Ti3C2 MXene. Appl. Catal. B:Environ. 2019, 252, 198–204.

[40]

Yan, Q. Q.; Yin, P.; Liang, H. W. Engineering the electronic interaction between metals and carbon supports for oxygen/hydrogen electrocatalysis. ACS Mater. Lett. 2021, 3, 1197–1212.

[41]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

[42]

Satheeshkumar, E.; Makaryan, T.; Melikyan, A.; Minassian, H.; Gogotsi, Y.; Yoshimura, M. One-step solution processing of Ag, Au and Pd@MXene hybrids for SERS. Sci. Rep. 2016, 6, 32049.

[43]

Sun, P.; Mirkin, M. V. Kinetics of electron-transfer reactions at nanoelectrodes. Anal. Chem. 2006, 78, 6526–6534.

[44]

Nogala, W.; Velmurugan, J.; Mirkin, M. V. Atomic force microscopy of electrochemical nanoelectrodes. Anal. Chem. 2012, 84, 5192–5197.

[45]

Liu, D.; Zhang, G.; Ji, Q. H.; Zhang, Y. Y.; Li, J. H. Synergistic electrocatalytic nitrogen reduction enabled by confinement of nanosized Au particles onto a two-dimensional Ti3C2 substrate. ACS Appl. Mater. Interfaces 2019, 11, 25758–25765.

[46]

Wang, X. F.; Shen, X.; Gao, Y. R.; Wang, Z. X.; Yu, R. C.; Chen, L. Q. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. J. Am. Chem. Soc. 2015, 137, 2715–2721.

[47]

Ma, J.; Cheng, Y. J.; Wang, L.; Dai, X. H.; Yu, F. Free-standing Ti3C2Tx MXene film as binder-free electrode in capacitive deionization with an ultrahigh desalination capacity. Chem. Eng. J. 2020, 384, 123329.

[48]

Zhou, P.; Lv, F.; Li, N.; Zhang, Y. L.; Mu, Z. J.; Tang, Y. H.; Lai, J. P.; Chao, Y. G.; Luo, M. C.; Lin, F. et al. Strengthening reactive metal–support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production. Nano Energy 2019, 56, 127–137.

[49]

Kong, W.; Deng, J. X.; Li, L. H. Recent advances in noble metal MXene-based catalysts for electrocatalysis. J. Mater. Chem. A 2022, 10, 14674–14691.

[50]
Bard, A. J.; Mirkin, M. V. Scanning Electrochemical Microscopy, 2nd ed.; CRC Press: Boca Raton, 2012.
[51]

Xiong, H.; Guo, J. D.; Amemiya, S. Probing heterogeneous electron transfer at an unbiased conductor by scanning electrochemical microscopy in the feedback mode. Anal. Chem. 2007, 79, 2735–2744.

[52]

Liu, Y. Y.; Xiao, H.; Goddard III, W. A. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. J. Am. Chem. Soc. 2016, 138, 15853–15856.

[53]

Chen, L. L.; Cui, Y. Y.; Shi, S. Q.; Luo, H. J.; Gao, Y. F. Exploring the work function variability and structural stability of VO2 (110) surface upon noble metal (Ag, Au, Pt) adsorption and incorporation. Appl. Surf. Sci. 2018, 450, 318–327.

Nano Research
Pages 8902-8909
Cite this article:
Jiang S, Sun T, Gu C, et al. Elucidating the electronic metal–support interaction enhanced hydrogen evolution activity on Ti3C2Tx MXene basal plane by scanning electrochemical microscopy. Nano Research, 2023, 16(7): 8902-8909. https://doi.org/10.1007/s12274-023-5595-0
Topics:

798

Views

8

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 07 December 2022
Revised: 07 February 2023
Accepted: 20 February 2023
Published: 18 April 2023
© Tsinghua University Press 2023
Return