AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Rational design and synergistic effect of ultrafine Ag nanodots decorated fish-scale-like Zn nanoleaves for highly selective electrochemical CO2 reduction

Songyuan Yang1Minghang Jiang1,2Miao Wang1Lei Wang1Xinmei Song1Yaoda Wang1Zuoxiu Tie1,3,4Zhong Jin1,3,4( )
State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Department of Chemistry, School of Science, Xihua University, Chengdu 610039, China
Suzhou Tierui New Energy Technology Co., Ltd., Suzhou 215228, China
Nanjing Tieming Energy Technology Co., Ltd., Nanjing 210093, China
Show Author Information

Graphical Abstract

We designed ultrafine Ag nanodots decorated fish-scale-like Zn nanoleaves by a convenient electrodeposition and replacement method for highly selective CO2-to-CO conversion with a Faradaic efficiency of 85.2%.

Abstract

The electrocatalytic CO2 reduction reaction (CO2RR) is regarded as a promising route for renewable energy conversion and storage, but its development is limited by the high overpotential and low stability and selectivity of electrocatalysts. Moreover, it is complicated to accurately adjust the nanostructure of electrocatalysts, which impacts repeatability. Herein, we propose the rational design and controlled preparation of ultrafine Ag nanodots decorated fish-scale-like Zn nanoleaves (Ag-NDs/Zn-NLs) for highly selective electrocatalytic CO2 reduction. The Ag-NDs/Zn-NLs can be in-situ grown on copper foil with simple electrodeposition and replacement reactions. Benefiting from the coordination and synergistic effect of Zn and Ag species, the reconstruction of Zn surface and the agglomeration of Ag-NDs are efficiently prevented, bringing high activity and durable electrocatalytic stability for CO2-to-CO conversion. The Faradaic efficiency for CO production reaches 85.2% at a moderate applied potential of –1.0 V vs. reversible hydrogen electrode (RHE). This study provides a promising approach for controlling the catalytic activity and selectivity of CO2RR through the structural adjustment and decoration of transition metal based nanocatalysts.

Electronic Supplementary Material

Download File(s)
12274_2023_5596_MOESM1_ESM.pdf (3.9 MB)

References

[1]

Pao, H. T.; Chen, C. C. Decoupling strategies: CO2 emissions, energy resources, and economic growth in the Group of Twenty. J. Clean. Prod. 2019, 206, 907–919.

[2]

Li, X.; Wen, J. Q.; Low, J.; Fang, Y. P.; Yu, J. G. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 2014, 57, 70–100.

[3]

Takata, T.; Pan, C. S.; Domen, K. Design and development of oxynitride photocatalysts for overall water splitting under visible light irradiation. ChemElectroChem 2016, 3, 31–37.

[4]

Zhang, W. J.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Wang, Y. R.; Xue, X. L.; Chen, R. P.; Yang, S. Y.; Jin, Z. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 2018, 5, 1700275.

[5]

Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

[6]

Zang, G. Y.; Sun, P. P.; Elgowainy, A. A.; Bafana, A.; Wang, M. Performance and cost analysis of liquid fuel production from H2 and CO2 based on the Fischer–Tropsch process. J. CO2 Util. 2021, 46, 101459.

[7]
Zhao, Z. B.; Zhang, J. G.; Lei, M.; Lum, Y. Reviewing the impact of halides on electrochemical CO2 reduction. Nano Res. Energy, in press, https://doi.org/10.26599/NRE.2023.9120044.
[8]

Zhao, R. B.; Ding, P.; Wei, P. P.; Zhang, L. C.; Liu, Q.; Luo, Y. L.; Li, T. S.; Lu, S. Y.; Shi, X. F.; Gao, S. Y. et al. Recent progress in electrocatalytic methanation of CO2 at ambient conditions. Adv. Funct. Mater. 2021, 31, 2009449.

[9]

Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, e9120021.

[10]

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

[11]

Lee, C. W.; Cho, N. H.; Im, S. W.; Jee, M. S.; Hwang, Y. J.; Min, B. K.; Nam, K. T. New challenges of electrokinetic studies in investigating the reaction mechanism of electrochemical CO2 reduction. J. Mater. Chem. A 2018, 6, 14043–14057.

[12]

Zhang, L.; Zhao, Z. J.; Wang, T.; Gong, J. L. Nano-designed semiconductors for electro- and photoelectro-catalytic conversion of carbon dioxide. Chem. Soc. Rev. 2018, 47, 5423–5443.

[13]

Kibria, G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Electrochemical CO2 reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design. Adv. Mater. 2019, 31, 1807166.

[14]

Shi, R.; Guo, J. H.; Zhang, X. R.; Waterhouse, G. I. N.; Han, Z. J.; Zhao, Y. X.; Shang, L.; Zhou, C.; Jiang, L.; Zhang, T. R. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 2020, 11, 3028.

[15]

Sun, D. L.; Xu, X. M.; Qin, Y. L.; Jiang, S. P.; Shao, Z. P. Rational design of Ag-based catalysts for the electrochemical CO2 reduction to CO: A review. ChemSusChem 2020, 13, 39–58.

[16]

Gao, D. F.; Zhou, H.; Cai, F.; Wang, J. G.; Wang, G. X.; Bao, X. H. Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal. 2018, 8, 1510–1519.

[17]

Luo, W.; Zhang, Q.; Zhang, J.; Moioli, E.; Zhao, K.; Züttel, A. Electrochemical reconstruction of ZnO for selective reduction of CO2 to CO. Appl. Catal. B: Environ. 2020, 273, 119060.

[18]

Hatsukade, T.; Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Feaster, J. T.; Jongerius, A. L.; Hahn, C.; Jaramillo, T. F. Carbon dioxide electroreduction using a silver-zinc alloy. Energy Technol. 2017, 5, 955–961.

[19]

Park, H.; Choi, J.; Kim, H.; Hwang, E.; Ha, D. H.; Ahn, S. H.; Kim, S. K. AgIn dendrite catalysts for electrochemical reduction of CO2 to CO. Appl. Catal. B: Environ. 2017, 219, 123–131.

[20]

Lee, H.; Kim, S. K.; Ahn, S. H. Electrochemical preparation of Ag/Cu and Au/Cu foams for electrochemical conversion of CO2 to CO. J. Ind. Eng. Chem. 2017, 54, 218–225.

[21]

Xiao, J.; Gao, M. R.; Liu, S. B.; Luo, J. L. Hexagonal Zn nanoplates enclosed by Zn (100) and Zn (002) facets for highly selective CO2 electroreduction to CO. ACS Appl. Mater. Interfaces 2020, 12, 31431–31438.

[22]

Luo, W.; Zhang, J.; Li, M.; Zuttel, A. Boosting CO production in electrocatalytic CO2 reduction on highly porous Zn catalysts. ACS Catal. 2019, 9, 3783–3791.

[23]

Lu, Y.; Han, B.; Tian, C. C.; Wu, J.; Geng, D. S.; Wang, D. W. Efficient electrocatalytic reduction of CO2 to CO on an electrodeposited Zn porous network. Electrochem. Commun. 2018, 97, 87–90.

[24]

Rosen, J.; Hutchings, G. S.; Lu, Q.; Forest, R. V.; Moore, A.; Jiao, F. Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction. ACS Catal. 2015, 5, 4586–4591.

[25]

Jeon, H. S.; Sinev, I.; Scholten, F.; Divins, N. J.; Zegkinoglou, I.; Pielsticker, L.; Cuenya, B. R. Operando evolution of the structure and oxidation state of size-controlled Zn nanoparticles during CO2 electroreduction. J. Am. Chem. Soc. 2018, 140, 9383–9386.

[26]

Xiang, Q.; Li, F.; Wang, J. L.; Chen, W. L.; Miao, Q. S.; Zhang, Q. F.; Tao, P.; Song, C. Y.; Shang, W.; Zhu, H. et al. Heterostructure of ZnO nanosheets/Zn with a highly enhanced edge surface for efficient CO2 electrochemical reduction to CO. ACS Appl. Mater. Interfaces 2021, 13, 10837–10844.

[27]

Yu, Q.; Meng, X. G.; Shi, L.; Liu, H. M.; Ye, J. H. Superfine Ag nanoparticle decorated Zn nanoplates for the active and selective electrocatalytic reduction of CO2 to CO. Chem. Commun. 2016, 52, 14105–14108.

[28]

Zhang, Z.; Wen, G. B.; Luo, D.; Ren, B. H.; Zhu, Y. F.; Gao, R.; Dou, H. Z.; Sun, G. R.; Feng, M.; Bai, Z. Y. et al. “Two ships in a bottle” design for Zn-Ag-O catalyst enabling selective and long-lasting CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 6855–6864.

[29]

Mou, S. Y.; Li, Y. H.; Yue, L. C.; Liang, J.; Luo, Y. L.; Liu, Q.; Li, T. S.; Lu, S. Y.; Asiri, A. M.; Xiong, X. L. et al. Cu2Sb decorated Cu nanowire arrays for selective electrocatalytic CO2 to CO conversion. Nano Res. 2021, 14, 2831–2836.

[30]

Ji, L.; Li, L.; Ji, X. Q.; Zhang, Y.; Mou, S. Y.; Wu, T. W.; Liu, Q.; Li, B. H.; Zhu, X. J.; Luo, Y. L. et al. Highly selective electrochemical reduction of CO2 to alcohols on an FeP nanoarray. Angew. Chem., Int. Ed. 2020, 59, 758–762.

[31]

Tan, W. K.; Razak, K. A.; Ibrahim, K.; Lockman, Z. Oxidation of etched Zn foil for the formation of ZnO nanostructure. J. Alloys Compd. 2011, 509, 6806–6811.

[32]

Han, K.; Ngene, P.; De Jongh, P. Structure dependent product selectivity for CO2 electroreduction on ZnO derived catalysts. ChemCatChem 2021, 13, 1998–2004.

[33]

Guo, W.; Shim, K.; Kim, Y. T. Ag layer deposited on Zn by physical vapor deposition with enhanced CO selectivity for electrochemical CO2 reduction. Appl. Surf. Sci. 2020, 526, 146651.

[34]

Zhang, W. J.; Xu, C. H.; Hu, Y.; Yang, S. Y.; Ma, L. B.; Wang, L.; Zhao, P. Y.; Wang, C. X.; Ma, J.; Jin, Z. Electronic and geometric structure engineering of bicontinuous porous Ag-Cu nanoarchitectures for realizing selectivity-tunable electrochemical CO2 reduction. Nano Energy 2020, 73, 104796.

[35]

Sun, H. P.; Pan, X. Q. Microstructure of ZnO shell on Zn nanoparticles. J. Mater. Res. 2004, 19, 3062–3067.

[36]

Nam, D. H.; Kim, R. H.; Han, D. W.; Kim, J. H.; Kwon, H. S. Effects of (NH4)2SO4 and BTA on the nanostructure of copper foam prepared by electrodeposition. Electrochim. Acta 2011, 56, 9397–9405.

[37]

Kilic, M. S.; Bazant, M. Z.; Ajdari, A. Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys. Rev. E 2007, 75, 021502.

[38]

Zhang, T. T.; Zhong, H. X.; Qiu, Y. L.; Li, X. F.; Zhang, H. M. Zn electrode with a layer of nanoparticles for selective electroreduction of CO2 to formate in aqueous solutions. J. Mater. Chem. A 2016, 4, 16670–16676.

[39]

Li, M. R.; Idros, M. N.; Wu, Y. M.; Burdyny, T.; Garg, S.; Zhao, X. S.; Wang, G.; Rufford, T. E. The role of electrode wettability in electrochemical reduction of carbon dioxide. J. Mater. Chem. A 2021, 9, 19369–19409.

[40]

Dunwell, M.; Luc, W.; Yan, Y. S.; Jiao, F.; Xu, B. J. Understanding surface-mediated electrochemical reactions: CO2 reduction and beyond. ACS Catal. 2018, 8, 8121–8129.

[41]

Won, D. H.; Shin, H.; Koh, J.; Chung, J.; Lee, H. S.; Kim, H.; Woo, S. I. Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst. Angew. Chem., Int. Ed. 2016, 55, 9297–9300.

[42]

Gao, F. Y.; Bao, R. C.; Gao, M. R.; Yu, S. H. Electrochemical CO2-to-CO conversion: Electrocatalysts, electrolytes, and electrolyzers. J. Mater. Chem. A 2020, 8, 15458–15478.

[43]

Pan, S. F.; Ke, X. X.; Wang, T. Y.; Liu, Q.; Zhong, L. B.; Zheng, Y. M. Synthesis of silver nanoparticles embedded electrospun PAN nanofiber thin-film composite forward osmosis membrane to enhance performance and antimicrobial activity. Ind. Eng. Chem. Res. 2019, 58, 984–993.

[44]

Liu, X.; Qi, S. R.; Li, Y.; Yang, L.; Cao, B.; Tang, C. Y. Y. Synthesis and characterization of novel antibacterial silver nanocomposite nanofiltration and forward osmosis membranes based on layer-by-layer assembly. Water Res. 2013, 47, 3081–3092.

[45]

Girón, J. V. M.; Vico, R. V.; Maggio, B.; Zelaya, E.; Rubert, A.; Benítez, G.; Carro, P.; Salvarezza, R. C.; Vela, M. E. Role of the capping agent in the interaction of hydrophilic Ag nanoparticles with DMPC as a model biomembrane. Environ. Sci.: Nano 2016, 3, 462–472.

Nano Research
Pages 8910-8918
Cite this article:
Yang S, Jiang M, Wang M, et al. Rational design and synergistic effect of ultrafine Ag nanodots decorated fish-scale-like Zn nanoleaves for highly selective electrochemical CO2 reduction. Nano Research, 2023, 16(7): 8910-8918. https://doi.org/10.1007/s12274-023-5596-z
Topics:

1043

Views

16

Crossref

15

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 30 December 2022
Revised: 09 February 2023
Accepted: 20 February 2023
Published: 14 March 2023
© Tsinghua University Press 2023
Return