AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

MXene-MoS2 nanocomposites via chemical vapor deposition with enhanced electrocatalytic activity for hydrogen evolution

Ruijie Zhang1Yajing Sun1Fei Jiao1Lin Li2( )Dechao Geng1( )Wenping Hu1
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
College of Chemistry, Tianjin Normal University, Tianjin 300387, China
Show Author Information

Graphical Abstract

MXene-MoS2 has been demonstrated as two-dimensional (2D) heterostructured composites by chemical vapor deposition (CVD) method. Benefiting from the unique structural and compositional characteristics, MXene-MoS2 nanocomposites deliver an exhibit excellent hydrogen evolution reaction (HER) activity.

Abstract

As a new paradigm of material science, two-dimensional (2D) heterostructured composites have attracted extensive interests because of combining the collective advantages and collaborative characteristics of individual building blocks. Molybdenum disulfide (MoS2) has demonstrated great promise as a low-cost substitute to platinum-based catalysts for electrochemical hydrogen production. However, the broad adoption of MoS2 is hindered by its limited number of active sites and low inherent electrical conductivity. One of the promising methods to further activate MoS2 is coupling engineering. Here, we demonstrate for the first time the synthesis of 2D MXene-MoS2 nanocomposites through chemical vapor deposition (CVD) approach, thus leading to precise design in structure type and orientation. The computational results show that nanocomposites have metallic properties. Owing to their unique 2D/2D structure, MXene-MoS2 nanocomposites exhibit more active catalytic sites, resulting in higher electrochemical performance, as inherited from parent excellent characteristics, and a much lower overpotential of ~ 69 mV at a current density of 10 mA·cm−2 is achieved. This work paves the way to employ CVD method by coupling engineering to construct 2D nanocomposites for energy storage applications.

Electronic Supplementary Material

Download File(s)
12274_2023_5602_MOESM1_ESM.pdf (1.5 MB)

References

[1]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[2]

Wu, H. B.; Lou, X. W. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Sci. Adv. 2017, 3, eaap9252.

[3]

Peng, C. X.; Ning, G. H.; Su, J.; Zhong, G. M.; Tang, W.; Tian, B. B.; Su, C. L.; Yu, D. Y.; Zu, L. H.; Yang, J. H. et al. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat. Energy 2017, 2, 17074.

[4]

Dong, X. L.; Lin, Y. X.; Li, P. L.; Ma, Y. Y.; Huang, J. H.; Bin, D.; Wang, Y. G.; Qi, Y.; Xia, Y. Y. High-energy rechargeable metallic lithium battery at −70 °C enabled by a cosolvent electrolyte. Angew. Chem., Int. Ed. 2019, 58, 5623–5627.

[5]

Mallouk, T. E. Divide and conquer. Nat. Chem. 2013, 5, 362–363.

[6]

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

[7]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[8]

Yu, X. Y.; Feng, Y.; Jeon, Y.; Guan, B. Y.; Lou, X. W.; Paik, U. Formation of Ni-Co-MoS2 nanoboxes with enhanced electrocatalytic activity for hydrogen evolution. Adv. Mater. 2016, 28, 9006–9011.

[9]

Chen, Y. M.; Yu, X. Y.; Li, Z.; Paik, U.; Lou, X. W. Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries. Sci. Adv. 2016, 2, e1600021.

[10]

Biroju, R. K.; Das, D.; Sharma, R.; Pal, S.; Mawlong, L. P. L.; Bhorkar, K.; Giri, P. K.; Singh, A. K.; Narayanan, T. N. Hydrogen evolution reaction activity of grapheme-MoS2 van der Waals heterostructures. ACS Energy Lett. 2017, 2, 1355–1361.

[11]

Cheng, Y. F.; Lu, S. K.; Liao, F.; Liu, L. B.; Li, Y. Q.; Shao, M. W. Rh-MoS2 nanocomposite catalysts with Pt-like activity for hydrogen evolution reaction. Adv. Funct. Mater. 2017, 27, 1700359.

[12]

Zhao, S.; Jin, R. X.; Song, Y. B.; Zhang, H.; House, S. D.; Yang, J. C.; Jin, R. C. Atomically precise gold nanoclusters accelerate hydrogen evolution over MoS2 nanosheets: The dual interfacial effect. Small 2017, 13, 1701519.

[13]

Lu, T. Y.; Li, T. F.; Shi, D. S.; Sun, J. L.; Pang, H.; Xu, L.; Yang, J.; Tang, Y. W. In situ establishment of Co/MoS2 heterostructures onto inverse opal-structured N,S-doped carbon hollow nanospheres: Interfacial and architectural dual engineering for efficient hydrogen evolution reaction. SmartMat 2021, 2, 591–602.

[14]

Eom, W.; Shin, H.; Ambade, R. B.; Lee, S. H.; Lee, K. H.; Kang, D. J.; Han, T. H. Large-scale wet-spinning of highly electroconductive MXene fibers. Nat. Commun. 2020, 11, 2825.

[15]

Niu, C. J.; Lee, H.; Chen, S. R.; Li, Q. Y.; Du, J.; Xu, W.; Zhang, J. G.; Whittingham, M. S.; Xiao, J.; Liu, J. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 2019, 4, 551–559.

[16]

Wang, H.; Wu, Y.; Yuan, X. Z.; Zeng, G. M.; Zhou, J.; Wang, X.; Chew, J. W. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges. Adv. Mater. 2018, 30, 1704561.

[17]

Zhang, Y. L.; Mu, Z. J.; Yang, C.; Xu, Z. K.; Zhang, S.; Zhang, X. Y.; Li, Y. J.; Lai, J. P.; Sun, Z. H.; Yang, Y. et al. Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707578.

[18]

Kirubasankar, B.; Narayanasamy, M.; Yang, J.; Han, M. Y.; Zhu, W. H.; Su, Y. J.; Angaiah, S.; Yan, C. Construction of heterogeneous 2D layered MoS2/MXene nanohybrid anode material via interstratification process and its synergetic effect for asymmetric supercapacitors. Appl. Surf. Sci. 2020, 534, 147644.

[19]

Li, B.; Wan, Z.; Wang, C.; Chen, P.; Huang, B.; Cheng, X.; Qian, Q.; Li, J.; Zhang, Z. W.; Sun, G. Z. et al. van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 2021, 20, 818–825.

[20]

Zhao, B.; Wan, Z.; Liu, Y.; Xu, J. Q.; Yang, X. D.; Shen, D. Y.; Zhang, Z. C.; Guo, C. H.; Qian, Q.; Li, J. et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 2021, 591, 385–390.

[21]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

[22]

Yang, P. F.; Wang, D. S.; Zhao, X. X.; Quan, W. Z.; Jiang, Q.; Li, X.; Tang, B.; Hu, J. Y.; Zhu, L. J.; Pan, S. Y. et al. Epitaxial growth of inch-scale single-crystal transition metal dichalcogenides through the patching of unidirectionally orientated ribbons. Nat. Commun. 2022, 13, 3238.

[23]

Li, X. L.; Yin, X. W.; Liang, S.; Li, M. H.; Cheng, L. F.; Zhang, L. T. 2D carbide MXene Ti2CTx as a novel high-performance electromagnetic interference shielding material. Carbon 2019, 146, 210–217.

[24]

Gao, M. R.; Chan, M. K. Y.; Sun, Y. G. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat. Commun. 2015, 6, 7493.

[25]

Xu, X. M.; Guo, T. C.; Hota, M. K.; Kim, H.; Zheng, D. X.; Liu, C.; Hedhili, M. N.; Alsaadi, R. S.; Zhang, X. X.; Alshareef, H. N. High-yield Ti3C2Tx MXene-MoS2 integrated circuits. Adv. Mater. 2022, 34, 2107370.

[26]

Chen, C.; Xie, X. Q.; Anasori, B.; Sarycheva, A.; Makaryan, T.; Zhao, M. Q.; Urbankowski, P.; Miao, L.; Jiang, J. J.; Gogotsi, Y. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 1846–1850.

[27]

Yang, J. J.; Wang, J. Q.; Li, H. Q.; Wu, Z.; Xing, Y. Q.; Chen, Y. F.; Liu, L. MoS2/MXene aerogel with conformal heterogeneous interfaces tailored by atomic layer deposition for tunable microwave absorption. Adv. Sci. 2022, 9, 2101988.

[28]

Tian, X.; Yao, L. J.; Cui, X. X.; Zhao, R. J.; Chen, T.; Xiao, X. C.; Wang, Y. D. A two-dimensional Ti3C2Tx MXene@TiO2/MoS2 heterostructure with excellent selectivity for the room temperature detection of ammonia. J. Mater. Chem. A 2022, 10, 5505–5519.

[29]

Zhang, Y. X.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. Hybrid phase 1T/2H-MoS2 with controllable 1T concentration and its promoted hydrogen evolution reaction. Nanoscale 2020, 12, 11908–11915.

[30]

Wei, S. C.; Fu, Y.; Liu, M. M.; Yue, H. Y.; Park, S.; Lee, Y. H.; Li, H. M.; Yao, F. Dual-phase MoS2/MXene/CNT ternary nanohybrids for efficient electrocatalytic hydrogen evolution. npj 2D Mater. Appl. 2022, 6, 25.

[31]

Hu, L.; Sun, Y. Y.; Gong, S. J.; Zong, H.; Yu, K.; Zhu, Z. Q. Experimental and theoretical investigation on MoS2/MXene heterostructure as an efficient electrocatalyst for hydrogen evolution in both acidic and alkaline media. New J. Chem. 2020, 44, 7902–7911.

Nano Research
Pages 8937-8944
Cite this article:
Zhang R, Sun Y, Jiao F, et al. MXene-MoS2 nanocomposites via chemical vapor deposition with enhanced electrocatalytic activity for hydrogen evolution. Nano Research, 2023, 16(7): 8937-8944. https://doi.org/10.1007/s12274-023-5602-5
Topics:

1019

Views

11

Crossref

13

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 07 September 2022
Revised: 21 February 2023
Accepted: 22 February 2023
Published: 25 March 2023
© Tsinghua University Press 2023
Return