AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In situ generated layered NiFe-LDH/MOF heterostructure nanosheet arrays with abundant defects for efficient alkaline and seawater oxidation

Manjie Xiao1,2Can Wu3Jiawei Zhu1Chengtian Zhang1Yan Li1Jiahui Lyu1Weihao Zeng1Haiwen Li4Lei Chen1Shichun Mu1,2( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Foshan Xianhu Laboratory, Foshan 528200, China
Science and Technology Institute of Advanced Technology, Wuhan 430051, China
Hefei General Machinery Research Institute, Hefei 230031, China
Show Author Information

Graphical Abstract

Unique NiFe-layered double hydroxide (LDH)/metal-organic framework (MOF) nanosheet arrays, with the optimized adsorption energy of oxygen-containing intermediates and rich defect structures, are easily reconstituted into the active species of NiOOH/FeOOH, jointly promoting ultra-efficient water and seawater oxidation.

Abstract

As the main limiting step of overall water splitting, oxygen evolution reaction (OER) is urgent to be enhanced by developing efficient catalysts to promote the process of electrolytic water. Based on theoretical analysis, the Ni-metal-organic framework (Ni-MOF) and NiFe-layered double hydroxide (NiFe-LDH) (NiFe-LDH/MOF) heterostructure can optimize the energy barrier of the OER process and decrease the adsorption energy of oxygen-containing intermediates, effectively accelerating the OER kinetics. Accordingly, layered NiFe-LDH/MOF heterostructures are in situ constructed through a facile two-step reaction process, with substantial oxygen defects and lattice defects that further improve the catalytic performance. As a result, only 208 and 275 mV OER overpotentials are needed for NiFe-LDH/MOF to drive the current densities of 20 and 100 mA·cm−2 in 1 M KOH solutions, and even maintain catalytic stability of 100 h at 20 mA·cm−2. When applied to seawater oxidation, only 235 and 307 mV OER overpotentials are required to achieve the current densities of 20 and 100 mA·cm−2, respectively, with almost no attenuation for 100 h stability test at 20 mA·cm−2, all better than commercial RuO2. This work provides the theoretical and experimental basis and a new idea for efficiently driving fresh water and seawater cracking by heterostructure and defect coupling design toward catalysts.

Electronic Supplementary Material

Download File(s)
12274_2023_5608_MOESM1_ESM.pdf (4.4 MB)

References

[1]

Zhang, K. X.; Zou, R. Q. Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges. Small 2021, 17, 2100129.

[2]

Li, L.; Cao, X. J.; Huo, J. J.; Qu, J. P.; Chen, W. H.; Liu, C. T.; Zhao, Y. F.; Liu, H.; Wang, G. X. High valence metals engineering strategies of Fe/Co/Ni-based catalysts for boosted OER electrocatalysis. J. Energy Chem. 2023, 76, 195–213.

[3]

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

[4]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[5]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[6]

Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.

[7]

Wang, Y. Z.; Yang, M.; Ding, Y. M.; Li, N. W.; Yu, L. Recent advances in complex hollow electrocatalysts for water splitting. Adv. Funct. Mater. 2022, 32, 2108681.

[8]

Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883–1894.

[9]

Zhu, K. Y.; Zhu, X. F.; Yang, W. S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem., Int. Ed. 2019, 58, 1252–1265.

[10]

Jiang, H.; Gu, J. X.; Zheng, X. S.; Liu, M.; Qiu, X. Q.; Wang, L. B.; Li, W. Z.; Chen, Z. F.; Ji, X. B.; Li, J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 2019, 12, 322–333.

[11]

Zhao, S. L.; Zhang, D. T.; Jiang, S.; Cui, Y. L. S.; Li, H. J.; Dong, J. C.; Xie, Z. R.; Wang, D. W.; Amal, R.; Xia, Z. H. et al. Carbon-supported layered double hydroxide nanodots for efficient oxygen evolution: Active site identification and activity enhancement. Nano Res. 2021, 14, 3329–3336.

[12]

Zhao, Z. Y.; Shao, Q.; Xue, J. Y.; Huang, B. L.; Niu, Z.; Gu, H. W.; Huang, X. Q.; Lang, J. P. Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction. Nano Res. 2022, 15, 310–316.

[13]

Zhou, D. J.; Li, P. S.; Lin, X.; McKinley, A.; Kuang, Y.; Liu, W.; Lin, W. F.; Sun, X. M.; Duan, X. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: Identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem. Soc. Rev. 2021, 50, 8790–8817.

[14]

Zhou, L.; Zhang, C.; Zhang, Y. Q.; Li, Z. H.; Shao, M. F. Host modification of layered double hydroxide electrocatalyst to boost the thermodynamic and kinetic activity of oxygen evolution reaction. Adv. Funct. Mater. 2021, 31, 2009743.

[15]

Dresp, S.; Thanh, T. N.; Klingenhof, M.; Brückner, S.; Hauke, P.; Strasser, P. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy Environ. Sci. 2020, 13, 1725–1729.

[16]

Tang, Y. Q.; Shen, H. M.; Cheng, J. Q.; Liang, Z. B.; Qu, C.; Tabassum, H.; Zou, R. Q. Fabrication of oxygen-vacancy abundant NiMn-layered double hydroxides for ultrahigh capacity supercapacitors. Adv. Funct. Mater. 2020, 30, 1908223.

[17]

Wang, Y. Q.; Tao, S.; Lin, H.; Wang, G. P.; Zhao, K. N.; Cai, R. M.; Tao, K. W.; Zhang, C. X.; Sun, M. Z.; Hu, J. et al. Atomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchor. Nano Energy 2021, 81, 105606.

[18]

Wang, X.; Chai, L. L.; Ding, J. Y.; Zhong, L.; Du, Y. J.; Li, T. T.; Hu, Y.; Qian, J. J.; Huang, S. M. Chemical and morphological transformation of MOF-derived bimetallic phosphide for efficient oxygen evolution. Nano Energy 2019, 62, 745–753.

[19]

Jiang, Z.; Li, Z. P.; Qin, Z. H.; Sun, H. Y.; Jiao, X. L.; Chen, D. R. LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. Nanoscale 2013, 5, 11770–11775.

[20]

Huo, J. M.; Wang, Y.; Yan, L. T.; Xue, Y. Y.; Li, S. N.; Hu, M. C.; Jiang, Y. C.; Zhai, Q. G. In situ semi-transformation from heterometallic MOFs to Fe-Ni LDH/MOF hierarchical architectures for boosted oxygen evolution reaction. Nanoscale 2020, 12, 14514–14523.

[21]

Zhang, W. D.; Hu, Q. T.; Wang, L. L.; Gao, J.; Zhu, H. Y.; Yan, X. D.; Gu, Z. G. In-situ generated Ni-MOF/LDH heterostructures with abundant phase interfaces for enhanced oxygen evolution reaction. Appl. Catal. B 2021, 286, 119906.

[22]

Xiao, M.; Zhang, C.; Wang, P.; Zeng, W.; Zhu, J.; Li, Y.; Peng, W.; Liu, Q.; Xu, H.; Zhao, Y. et al. Polymetallic phosphides evolved from MOF and LDH dual-precursors for robust oxygen evolution reaction in alkaline and seawater media. Mater. Today Phys. 2022, 24, 100684.

[23]

Dai, Z. X.; Du, X. Q.; Zhang, X. S. Controlled synthesis of NiCo2O4@Ni-MOF on Ni foam as efficient electrocatalyst for urea oxidation reaction and oxygen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 17252–17262.

[24]

Huang, W.; Peng, C.; Tang, J.; Diao, F. Y.; Yesibolati, M. N.; Sun, H. Y.; Engelbrekt, C.; Zhang, J. D.; Xiao, X. X.; Mølhave, K. S. Electronic structure modulation with ultrafine Fe3O4 nanoparticles on 2D Ni-based metal-organic framework layers for enhanced oxygen evolution reaction. J. Energy Chem. 2022, 65, 78–88.

[25]

Yang, X. D.; Xu, B.; Zhang, S. T.; Zhao, Z. H.; Sun, Y. Q.; Liu, G. N.; Liu, Q. S.; Li, C. C. Hierarchical Ni-BDC coated FeOOH nanosheets: A coordination tuning synergistic electrocatalyst with enhanced activity for water oxidation. Int. J. Hydrogen Energy 2020, 45, 9546–9554.

[26]

Huang, H. W.; Kim, H.; Lee, A.; Kim, S.; Lim, W. G.; Park, C. Y.; Kim, S.; Kim, S. K.; Lee, J. Structure engineering defective and mass transfer-enhanced RuO2 nanosheets for proton exchange membrane water electrolyzer. Nano Energy 2021, 88, 106276.

[27]

Wu, C. C.; Li, H. Q.; Xia, Z. X.; Zhang, X. M.; Deng, R. Y.; Wang, S. L.; Sun, G. Q. NiFe layered double hydroxides with unsaturated metal sites via precovered surface strategy for oxygen evolution reaction. ACS Catal. 2020, 10, 11127–11135.

[28]

Chen, J. D.; Zheng, F.; Zhang, S. J.; Fisher, A.; Zhou, Y.; Wang, Z. Y.; Li, Y. Y.; Xu, B. B.; Li, J. T.; Sun, S. G. Interfacial interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis. ACS Catal. 2018, 8, 11342–11351.

[29]

You, H. H.; Wu, D. S.; Si, D. H.; Cao, M. N.; Sun, F. F.; Zhang, H.; Wang, H. M.; Liu, T. F.; Cao, R. Monolayer NiIr-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater splitting. J. Am. Chem. Soc. 2022, 144, 9254–9263.

[30]

Hu, J.; Li, S. W.; Chu, J. Y.; Niu, S. Q.; Wang, J.; Du, Y. C.; Li, Z. H.; Han, X. J.; Xu, P. Understanding the phase-induced electrocatalytic oxygen evolution reaction activity on FeOOH nanostructures. ACS Catal. 2019, 9, 10705–10711.

[31]

Wang, X. X.; Yang, Y.; Diao, L. X.; Tang, Y.; He, F.; Liu, E. Z.; He, C. N.; Shi, C. S.; Li, J. J.; Sha, J. W. et al. CeOx-decorated NiFe-layered double hydroxide for efficient alkaline hydrogen evolution by oxygen vacancy engineering. ACS Appl. Mater. Interfaces 2018, 10, 35145–35153.

[32]

Tang, Y. H.; Liu, Q.; Dong, L.; Wu, H. B.; Yu, X. Y. Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction. Appl. Catal. B 2020, 266, 118627.

[33]

Li, D. D.; Li, T.; Hao, G. Y.; Guo, W. J.; Chen, S.; Liu, G.; Li, J. P.; Zhao, Q. IrO2 nanoparticle-decorated single-layer NiFe LDHs nanosheets with oxygen vacancies for the oxygen evolution reaction. Chem. Eng. J. 2020, 399, 125738.

[34]

Liu, S. X.; Zhang, H. W.; Hu, E. L.; Zhu, T. Y.; Zhou, C. Y.; Huang, Y. C.; Ling, M.; Gao, X. H.; Lin, Z. Boosting oxygen evolution activity of NiFe-LDH using oxygen vacancies and morphological engineering. J. Mater. Chem. A 2021, 9, 23697–23702.

[35]

Liao, H. X.; Ni, G. H.; Tan, P. F.; Liu, Y.; Chen, K. J.; Wang, G. M.; Liu, M.; Pan, J. Borate narrowed band gap of nickel-iron layer double hydroxide to mediate rapid reconstruction kinetics for water oxidation. Appl. Catal. B 2022, 317, 121713.

[36]

Zhao, Z. L.; Wang, Q.; Huang, X.; Feng, Q.; Gu, S.; Zhang, Z.; Xu, H.; Zeng, L.; Gu, M.; Li, H. Boosting the oxygen evolution reaction using defect-rich ultra-thin ruthenium oxide nanosheets in acidic media. Energy Environ. Sci. 2020, 13, 5143–5151.

[37]

Ge, R. X.; Li, L.; Su, J. W.; Lin, Y. C.; Tian, Z. Q.; Chen, L. Ultrafine defective RuO2 electrocatayst integrated on carbon cloth for robust water oxidation in acidic media. Adv. Energy Mater. 2019, 9, 1901313.

[38]

Li, C. F.; Xie, L. J.; Zhao, J. W.; Gu, L. F.; Tang, H. B.; Zheng, L. R.; Li, G. R. Interfacial Fe–O–Ni–O–Fe bonding regulates the active Ni sites of Ni-MOFs via iron doping and decorating with FeOOH for super-efficient oxygen evolution. Angew. Chem., Int. Ed. 2022, 61, e202116934.

[39]

Anantharaj, S.; Kundu, S.; Noda, S. “The Fe effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514.

[40]

Wei, B. B.; Shang, C. Q.; Wang, X.; Zhou, G. F. Conductive FeOOH as multifunctional interlayer for superior lithium-sulfur batteries. Small 2020, 16, 2002789.

[41]

Tang, W. Z.; Zhang, G. W.; Qiu, Y. J. FeOOH/Ni heterojunction nanoarrays on carbon cloth as a robust catalyst for efficient oxygen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 28566–28575.

[42]

Niu, S.; Jiang, W. J.; Wei, Z. X.; Tang, T.; Ma, J. M.; Hu, J. S.; Wan, L. J. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc. 2019, 141, 7005–7013.

[43]

Wang, B. Q.; Han, X.; Guo, C.; Jing, J.; Yang, C.; Li, Y. P.; Han, A. J.; Wang, D. S.; Liu, J. F. Structure inheritance strategy from MOF to edge-enriched NiFe-LDH array for enhanced oxygen evolution reaction. Appl. Catal. B 2021, 298, 120580.

[44]

Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. FeOOH/Co/FeOOH Hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 3694–3698.

[45]

Luo, X.; Ji, P. X.; Wang, P. Y.; Tan, X.; Chen, L.; Mu, S. C. Spherical Ni3S2/Fe-NiPx magic cube with ultrahigh water/seawater oxidation efficiency. Adv. Sci. 2022, 9, 2104846.

[46]

Chen, R. Z.; Zhang, Z. Y.; Wang, Z. C.; Wu, W.; Du, S. W.; Zhu, W. B.; Lv, H. F.; Cheng, N. C. Constructing air-stable and reconstruction-inhibited transition metal sulfide catalysts via tailoring electron-deficient distribution for water oxidation. ACS Catal. 2022, 12, 13234–13246.

[47]

Sun, Y. Q.; Li, X. L.; Zhang, T.; Xu, K.; Yang, Y. S.; Chen, G. Z.; Li, C. C.; Xie, Y. Nitrogen-doped cobalt diselenide with cubic phase maintained for enhanced alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 21575–21582.

Nano Research
Pages 8945-8952
Cite this article:
Xiao M, Wu C, Zhu J, et al. In situ generated layered NiFe-LDH/MOF heterostructure nanosheet arrays with abundant defects for efficient alkaline and seawater oxidation. Nano Research, 2023, 16(7): 8945-8952. https://doi.org/10.1007/s12274-023-5608-z
Topics:

1433

Views

61

Crossref

35

Web of Science

59

Scopus

1

CSCD

Altmetrics

Received: 08 January 2023
Revised: 13 February 2023
Accepted: 22 February 2023
Published: 26 April 2023
© Tsinghua University Press 2023
Return