AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Magnetoresistance anomaly in Fe5GeTe2 homo-junctions induced by its intrinsic transition

Ruijie Zhao1Yanfei Wu1( )Shaohua Yan2Xinjie Liu1He Huang1Yang Gao3Mengyuan Zhu1Jianxin Shen1Shipeng Shen4Weifeng Xu1Zeyu Zhang1Liyuan Zhang1Jingyan Zhang1Xinqi Zheng1Hechang Lei2Ying Zhang5Shouguo Wang1,3( )
School of Materials Science and Engineering, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
School of Materials Science and Engineering, Anhui University, Hefei 230601, China
Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Show Author Information

Graphical Abstract

A peculiar enhancement of anomalous Hall effect is discovered in Fe5GeTe2 (F5GT) nanoflakes near an intrinsic transition temperature Tp. Negative magnetoresistance (N-MR) and butterfly-shaped magnetoresistance (B-MR) are observed in F5GT homo-junction devices, and noticeably show the maxima near the Tp rather than at the lowest temperatures.

Abstract

Two-dimensional van der Waals (2D vdW) magnets have attracted great attention recently and possess the unprecedented advantages of incorporating high-quality vdW heterostructures and homostructures into spintronic devices, and exploring various physical phenomena or technologies. Among them, Fe5GeTe2 (F5GT) has ferromagnetic order close to room temperature, however the magnetic properties near its intrinsic transitions and F5GT-based 2D devices remain mostly unexplored. Here, we systematically demonstrate the peculiar magnetic properties of Fe5GeTe2 nanoflakes near its intrinsic transition temperature (Tp) which is far lower than its Curie temperature (TC) of ~ 265 K, and firstly discover anomalous magnetoresistance effect in F5GT homo-junctions by magneto-transport measurements. The strongest anomalous Hall effect occurs around Tp which is located in a temperature range from 130 to 160 K for the F5GT nanoflakes with different thicknesses. Furthermore, negative magnetoresistance (N-MR) and butterfly-shaped magnetoresistance (B-MR) are observed in F5GT homo-junction devices, and they appeared only in an intermediate temperature range from 110 to 160 K, noticeably showing the maxima near the Tp rather than the lowest temperature. Our experimental results clearly reveal the significant influence of intrinsic transitions on magnetic properties of F5GT and magnetoresistance effect in F5GT homo-junction devices, which imply a new strategy to achieve high-performance 2D spintronic devices by tuning intrinsic magnetic or structural transitions in 2D vdW magnets.

Electronic Supplementary Material

Download File(s)
12274_2023_5609_MOESM1_ESM.pdf (2.1 MB)

References

[1]

Yang, H.; Valenzuela, S. O.; Chshiev, M.; Couet, S.; Dieny, B.; Dlubak, B.; Fert, A.; Garello, K.; Jamet, M.; Jeong, D. E. et al. Two-dimensional materials prospects for non-volatile spintronic memories. Nature 2022, 606, 663–673.

[2]

Burch, K. S.; Mandrus, D.; Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52.

[3]

Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.

[4]

Mermin, N. D.; Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 1966, 17, 1133–1136.

[5]

Wang, Z.; Gutiérrez-Lezama, I.; Ubrig, N.; Kroner, M.; Gibertini, M.; Taniguchi, T.; Watanabe, K.; Imamoğlu, A.; Giannini, E.; Morpurgo, A. F. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 2018, 9, 2516.

[6]

Klein, D. R.; Macneill, D.; Lado, J. L.; Soriano, D.; Navarro-Moratalla, E.; Watanabe, K.; Taniguchi, T.; Manni, S.; Canfield, P.; Fernández-Rossier, J. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 2018, 360, 1218–1222.

[7]

Ghazaryan, D.; Greenaway, M. T.; Wang, Z.; Guarochico-Moreira, V. H.; Vera-Marun, I. J.; Yin, J.; Liao, Y.; Morozov, S. V.; Kristanovski, O.; Lichtenstein, A. I. et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat. Electron. 2018, 1, 344–349.

[8]

Chen, W.; Sun, Z. Y.; Wang, Z. J.; Gu, L. H.; Xu, X. D.; Wu, S. W.; Gao, C. L. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 2019, 366, 983–987.

[9]

Mondal, S.; Khan, N.; Mishra, S. M.; Satpati, B.; Mandal, P. Critical behavior in the van der Waals itinerant ferromagnet Fe4GeTe2. Phys. Rev. B 2021, 104, 094405.

[10]

Seo, J.; Kim, D. Y.; An, E. S.; Kim, K.; Kim, G. Y.; Hwang, S. Y.; Kim, D. W.; Jang, B. G.; Kim, H.; Eom, G. et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal. Sci. Adv. 2020, 6, eaay8912.

[11]

Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

[12]

Fei, Z. Y.; Huang, B.; Malinowski, P.; Wang, W. B.; Song, T. C.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X. Y.; May, A. F. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782.

[13]

May, A. F.; Ovchinnikov, D.; Zheng, Q.; Hermann, R.; Calder, S.; Huang, B.; Fei, Z. Y.; Liu, Y. H.; Xu, X. D.; McGuire, M. A. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 2019, 13, 4436–4442.

[14]

Tan, C.; Lee, J.; Jung, S. G.; Park, T.; Albarakati, S.; Partridge, J.; Field, M. R.; McCulloch, D. G.; Wang, L.; Lee, C. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 2018, 9, 1554.

[15]

Zheng, G. L.; Xie, W. Q.; Albarakati, S.; Algarni, M.; Tan, C.; Wang, Y. H.; Peng, J. Y.; Partridge, J.; Farrar, L.; Yi, J. B. et al. Gate-tuned interlayer coupling in van der Waals ferromagnet Fe3GeTe2 nanoflakes. Phys. Rev. Lett. 2020, 125, 047202.

[16]

Wang, Y.; Wang, C.; Liang, S. J.; Ma, Z. C.; Xu, K.; Liu, X. W.; Zhang, L. L.; Admasu, A. S.; Cheong, S. W.; Wang, L. Z. et al. Strain-sensitive magnetization reversal of a van der Waals magnet. Adv. Mater. 2020, 32, 2004533.

[17]

Zhang, L. M.; Huang, X. Y.; Dai, H. W.; Wang, M. S.; Cheng, H.; Tong, L.; Li, Z.; Han, X. T.; Wang, X.; Ye, L. et al. Proximity-coupling-induced significant enhancement of coercive field and Curie temperature in 2D van der Waals heterostructures. Adv. Mater. 2020, 32, 2002032.

[18]

Dai, H. W.; Cheng, H.; Cai, M. H.; Hao, Q. H.; Xing, Y. T.; Chen, H. J.; Chen, X. D.; Wang, X.; Han, J. B. Enhancement of the coercive field and exchange bias effect in Fe3GeTe2/MnPX3 (X = S and Se) van der Waals heterostructures. ACS Appl. Mater. Interfaces 2021, 13, 24314–24320.

[19]

Hu, C.; Zhang, D.; Yan, F. G.; Li, Y. C.; Lv, Q. S.; Zhu, W. K.; Wei, Z. M.; Chang, K.; Wang, K. Y. From two- to multi-state vertical spin valves without spacer layer based on Fe3GeTe2 van der Waals homo-junctions. Sci. Bull. 2020, 65, 1072–1077.

[20]

Lin, H. L.; Yan, F. G.; Hu, C.; Lv, Q. S.; Zhu, W. K.; Wang, Z. A.; Wei, Z. M.; Chang, K.; Wang, K. Y. Spin-valve effect in Fe3GeTe2/MoS2/Fe3GeTe2 van der Waals heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 43921–43926.

[21]

Zeng, X. Y.; Ye, G.; Huang, S. Y.; Ye, Q. K.; Li, W.; Chen, C. F.; Kuang, H. Z.; Li, M. L.; Liu, Y. L.; Pan, Z. J. et al. Thickness modulations enable multi-functional spin valves based on van der Waals hetero-structure. Nano Today 2022, 42, 101373.

[22]

Wang, Z.; Sapkota, D.; Taniguchi, T.; Watanabe, K.; Mandrus, D.; Morpurgo, A. F. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 2018, 18, 4303–4308.

[23]

Zhu, W. K.; Lin, H. L.; Yan, F. G.; Hu, C.; Wang, Z. A.; Zhao, L. X.; Deng, Y. C.; Kudrynskyi, Z. R.; Zhou, T.; Kovalyuk, Z. D. et al. Large tunneling magnetoresistance in van der Waals ferromagnet/semiconductor heterojunctions. Adv. Mater. 2021, 33, 2104658.

[24]

Della Torre, E.; Bennett, L. H.; Watson, R. E. Extension of the Bloch T3/2 law to magnetic nanostructures: Bose–Einstein condensation. Phys. Rev. Lett. 2005, 94, 147210.

[25]

Gao, Y.; Yin, Q. W.; Wang, Q.; Li, Z. L.; Cai, J. W.; Zhao, T. Y.; Lei, H. C.; Wang, S. G.; Zhang, Y.; Shen, B. G. Spontaneous (anti)meron chains in the domain walls of van der Waals ferromagnetic Fe5−xGeTe2. Adv. Mater. 2020, 32, 2005228.

[26]

Purdie, D. G.; Pugno, N. M.; Taniguchi, T.; Watanabe, K.; Ferrari, A. C.; Lombardo, A. Cleaning interfaces in layered materials heterostructures. Nat. Commun. 2018, 9, 5387.

[27]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[28]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[29]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[30]

Gao, Y.; Yan, S. H.; Yin, Q. W.; Huang, H.; Li, Z. L.; Zhu, Z. Z.; Cai, J. W.; Shen, B. G.; Lei, H. C.; Zhang, Y. et al. Manipulation of topological spin configuration via tailoring thickness in van der Waals ferromagnetic Fe5−xGeTe2. Phys. Rev. B 2022, 105, 014426.

[31]

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

[32]

May, A. F.; Bridges, C. A.; McGuire, M. A. Physical properties and thermal stability of Fe5−xGeTe2 single crystals. Phys. Rev. Mater. 2019, 3, 104401.

[33]

May, A. F.; Du, M. H.; Cooper, V. R.; McGuire, M. A. Tuning magnetic order in the van der Waals metal Fe5GeTe2 by cobalt substitution. Phys. Rev. Mater. 2020, 4, 074008.

[34]

Zhang, H. R.; Chen, R.; Zhai, K.; Chen, X.; Caretta, L.; Huang, X. X.; Chopdekar, R. V.; Cao, J. H.; Sun, J. R.; Yao, J. et al. Itinerant ferromagnetism in van der Waals Fe5−xGeTe2 crystals above room temperature. Phys. Rev. B 2020, 102, 064417.

[35]

Tan, C.; Xie, W. Q.; Zheng, G. L.; Aloufi, N.; Albarakati, S.; Algarni, M.; Li, J. B.; Partridge, J.; Culcer, D.; Wang, X. L. et al. Gate-controlled magnetic phase transition in a van der Waals magnet Fe5GeTe2. Nano Lett. 2021, 21, 5599–5605.

[36]

Tang, B. J.; Wang, X. W.; Han, M. J.; Xu, X. D.; Zhang, Z. W.; Zhu, C.; Cao, X.; Yang, Y. M.; Fu, Q. D.; Yang, J. Q. et al. Phase engineering of Cr5Te8 with colossal anomalous Hall effect. Nat. Electron. 2022, 5, 224–232.

[37]

Wen, Y.; Liu, Z. H.; Zhang, Y.; Xia, C. X.; Zhai, B. X.; Zhang, X. H.; Zhai, G. H.; Shen, C.; He, P.; Cheng, R. Q. et al. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett. 2020, 20, 3130–3139.

[38]

Hardy, W. J.; Chen, C. W.; Marcinkova, A.; Ji, H.; Sinova, J.; Natelson, D.; Morosan, E. Very large magnetoresistance in Fe0.28TaS2 single crystals. Phys. Rev. B 2015, 91, 054426.

[39]

Ohta, T.; Sakai, K.; Taniguchi, H.; Driesen, B.; Okada, Y.; Kobayashi, K.; Niimi, Y. Enhancement of coercive field in atomically-thin quenched Fe5GeTe2. Appl. Phys. Express 2020, 13, 043005.

[40]

Wu, X. C.; Lei, L.; Yin, Q. W.; Zhao, N. N.; Li, M.; Wang, Z. L.; Liu, Q. X.; Song, W. H.; Ma, H.; Ding, P. F. et al. Direct observation of competition between charge order and itinerant ferromagnetism in the van der Waals crystal Fe5−xGeTe2. Phys. Rev. B 2021, 104, 165101.

[41]

Li, Z. Y.; Tang, M.; Huang, J. W.; Qin, F.; Ao, L. Y.; Shen, Z. W.; Zhang, C. R.; Chen, P.; Bi, X. Y.; Qiu, C. Y. et al. Magnetic anisotropy control with Curie temperature above 400 K in a van der Waals ferromagnet for spintronic device. Adv. Mater. 2022, 34, 2201209.

[42]

Ly, T. T.; Park, J.; Kim, K.; Ahn, H. B.; Lee, N. J.; Kim, K.; Park, T. E.; Duvjir, G.; Lam, N. H.; Jang, K. et al. Direct observation of Fe-Ge ordering in Fe5−xGeTe2 crystals and resultant helimagnetism. Adv. Funct. Mater. 2021, 31, 2009758.

[43]

Yang, S. X.; Zhang, T. L.; Jiang, C. B. Van der Waals magnets: Material family, detection and modulation of magnetism, and perspective in spintronics. Adv. Sci. 2021, 8, 2002488.

[44]

Zhang, C. H.; Liu, C.; Zhang, S. F.; Zhou, B. J.; Guan, C. S.; Ma, Y. C.; Algaidi, H.; Zheng, D. X.; Li, Y.; He, X. et al. Magnetic skyrmions with unconventional helicity polarization in a van der Waals ferromagnet. Adv. Mater. 2022, 34, 2204163.

[45]

Arai, M.; Moriya, R.; Yabuki, N.; Masubuchi, S.; Ueno, K.; Machida, T. Construction of van der Waals magnetic tunnel junction using ferromagnetic layered dichalcogenide. Appl. Phys. Lett. 2015, 107, 103107.

[46]

Kim, J.; Son, S.; Coak, M. J.; Hwang, I.; Lee, Y.; Zhang, K. X.; Park, J. G. Observation of plateau-like magnetoresistance in twisted Fe3GeTe2/Fe3GeTe2 junction. J. Appl. Phys. 2020, 128, 093901.

[47]

Liu, P.; Liu, C. X.; Wang, Z.; Huang, M.; Hu, G. J.; Xiang, J. X.; Feng, C.; Chen, C.; Ma, Z. W.; Cui, X. D. et al. Planar-symmetry-breaking induced antisymmetric magnetoresistance in van der Waals ferromagnet Fe3GeTe2. Nano Res. 2022, 15, 2531–2536.

[48]

Niu, W.; Cao, Z.; Wang, Y. L.; Wu, Z. Q.; Zhang, X. Q.; Han, W. B.; Wei, L. J.; Wang, L. X.; Xu, Y. B.; Zou, Y. M. et al. Antisymmetric magnetoresistance in Fe3GeTe2 nanodevices of inhomogeneous thickness. Phys. Rev. B 2021, 104, 125429.

[49]

Albarakati, S.; Tan, C.; Chen, Z. J.; Partridge, J. G.; Zheng, G. L.; Farrar, L.; Mayes, E. L. H.; Field, M. R.; Lee, C.; Wang, Y. H. et al. Antisymmetric magnetoresistance in van der Waals Fe3GeTe2/graphite/Fe3GeTe2 trilayer heterostructures. Sci. Adv. 2019, 5, eaaw0409.

[50]

Hu, G. J.; Zhu, Y. M.; Xiang, J. X.; Yang, T. Y.; Huang, M.; Wang, Z.; Wang, Z.; Liu, P.; Zhang, Y.; Feng, C. et al. Antisymmetric magnetoresistance in a van der Waals antiferromagnetic/ferromagnetic layered MnPS3/Fe3GeTe2 stacking heterostructure. ACS Nano 2020, 14, 12037–12044.

[51]

Chen, X.; Victora, R. H. Effect of pinholes in magnetic tunnel junctions. Appl. Phys. Lett. 2007, 91, 212104.

[52]

Shao, Y.; Lv, W. X.; Guo, J. J.; Qi, B. T.; Lv, W. M.; Li, S. K.; Guo, G. H.; Zeng, Z. M. The current modulation of anomalous Hall effect in van der Waals Fe3GeTe2/WTe2 heterostructures. Appl. Phys. Lett. 2020, 116, 092401.

[53]

Zhang, K. X.; Han, S.; Lee, Y.; Coak, M. J.; Kim, J.; Hwang, I.; Son, S.; Shin, J.; Lim, M.; Jo, D. et al. Gigantic current control of coercive field and magnetic memory based on nanometer-thin ferromagnetic van der Waals Fe3GeTe2. Adv. Mater. 2021, 33, 2004110.

Nano Research
Pages 10443-10450
Cite this article:
Zhao R, Wu Y, Yan S, et al. Magnetoresistance anomaly in Fe5GeTe2 homo-junctions induced by its intrinsic transition. Nano Research, 2023, 16(7): 10443-10450. https://doi.org/10.1007/s12274-023-5609-y
Topics:

1236

Views

4

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 08 January 2023
Revised: 17 February 2023
Accepted: 22 February 2023
Published: 04 April 2023
© Tsinghua University Press 2023
Return