AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

External field assisted hydrogen evolution reaction

Jingwen LiWeinan YinJunan PanYingbo ZhangFengshun WangLonglu Wang( )Qiang Zhao ( )
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
Show Author Information

Graphical Abstract

Recent discoveries and research results of external field-assisted hydrogen evolution reaction (HER) are systematically summarized, including electric field, thermal field, optical field, magnetic field, and acoustic field.

Abstract

As a clean, efficient, and sustainable energy, hydrogen is expected to replace traditional fossil energy. A series of studies focusing on morphology regulation, surface modification, and structural reconstruction have been devoted to improving the intrinsic catalytic activity of non-noble metal catalysts. However, complex system structure design and the mutual interference of various chemical components would hinder the further improvement of hydrogen evolution performance. In recent years, external field assisted hydrogen evolution reaction (HER) has become a new research hotspot. Herein, we systematically summarize the promoting effects of various external fields on catalytic hydrogen production from the aspects of system design and catalytic mechanism, including electric field, thermal field, optical field, magnetic field, and acoustic field. Ultimately, we discuss the key challenges facing this external field regulation strategy and put forward the prospect of future research topics. We sincerely expect that this review could not only provide a new insight into the basic mechanism of external-assisted catalysis, but also promote further research on improving HER performance from a more diverse and comprehensive perspective.

References

[1]

Welsby, D.; Price, J.; Pye, S.; Ekins, P. Unextractable fossil fuels in a 1.5 °C world. Nature 2021, 597, 230–234.

[2]

Martins, F.; Felgueiras, C.; Smitkova, M.; Caetano, N. Analysis of fossil fuel energy consumption and environmental impacts in european countries. Energies 2019, 12, 964.

[3]

Abas, N.; Kalair, A.; Khan, N. Review of fossil fuels and future energy technologies. Futures 2015, 69, 31–49.

[4]

Vohra, K.; Vodonos, A.; Schwartz, J.; Marais, E. A.; Sulprizio, M. P.; Mickley, L. J. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. Environ. Res. 2021, 195, 110754.

[5]

Abe, J. O.; Popoola, A. P. I.; Ajenifuja, E.; Popoola, O. M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086.

[6]

Yue, M. L.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renew. Sust. Energy Rev. 2021, 146, 111180.

[7]

Midilli, A.; Ay, M.; Dincer, I.; Rosen, M. A. On hydrogen and hydrogen energy strategies: I: Current status and needs. Renew. Sust. Energy Rev. 2005, 9, 255–271.

[8]

Rosen, M. A.; Koohi-Fayegh, S. The prospects for hydrogen as an energy carrier: An overview of hydrogen energy and hydrogen energy systems. Energy, Ecol. Environ. 2016, 1, 10–29.

[9]

Pareek, A.; Dom, R.; Gupta, J.; Chandran, J.; Adepu, V.; Borse, P. H. Insights into renewable hydrogen energy: Recent advances and prospects. Mater. Sci. Energy Technol. 2020, 3, 319–327.

[10]

Huang, L.; Zaman, S.; Tian, X. L.; Wang, Z. T.; Fan, W. S.; Xia, B. Y. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells. Acc. Chem. Res. 2021, 54, 311–322.

[11]

Wang, S.; Lu, A. L.; Zhong, C. J. Hydrogen production from water electrolysis: Role of catalysts. Nano Converg. 2021, 8, 4.

[12]

Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638.

[13]

Li, Y.; Yin, K.; Wang, L. L.; Lu, X. L.; Zhang, Y. Q.; Liu, Y. T.; Yan, D. F.; Song, Y. Z.; Luo, S. L. Engineering MoS2 nanomesh with holes and lattice defects for highly active hydrogen evolution reaction. Appl. Catal. B:Environ. 2018, 239, 537–544.

[14]

Zhang, S. Q.; Wang, L. L.; Liu, C. B.; Luo, J. M.; Crittenden, J.; Liu, X.; Cai, T.; Yuan, J. L.; Pei, Y.; Liu, Y. T. Photocatalytic wastewater purification with simultaneous hydrogen production using MoS2 QD-decorated hierarchical assembly of ZnIn2S4 on reduced graphene oxide photocatalyst. Water Res. 2017, 121, 11–19.

[15]

Li, Y.; Wang, L. L.; Cai, T.; Zhang, S. Q.; Liu, Y. T.; Song, Y. Z.; Dong, X. R.; Hu, L. Glucose-assisted synthesize 1D/2D nearly vertical CdS/MoS2 heterostructures for efficient photocatalytic hydrogen evolution. Chem. Eng. J. 2017, 321, 366–374.

[16]

Xie, L. B.; Wang, L. L.; Zhao, W. W.; Liu, S. J.; Huang, W.; Zhao, Q. WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nat. Commun. 2021, 12, 5070.

[17]
Li, J. W.; Pan, J. A.; Yin, W. N.; Cai, Y. T.; Huang, H.; He, Y. H.; Gong, G.; Yuan, Y.; Fan, C. P.; Zhang, Q. F. et al. Recent status and advanced progress of tip effect induced by micro-nanostructure. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2022.108049.
[18]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L. Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[19]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia. Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[20]

Chang, C.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, S. J.; Zhuang, Z. C.; Liu, S. J.; Li, J. M.; Liu, X.; Zhao, Q. Amorphous molybdenum sulfide and its Mo-S motifs: Structural characteristics, synthetic strategies, and comprehensive applications. Nano Res. 2022, 15, 8613–8635.

[21]

Zhang, S. Q.; Liu, X.; Liu, C. B.; Luo, S. L.; Wang, L. L.; Cai, T.; Zeng, Y. X.; Yuan, J. L.; Dong, W. Y.; Pei, Y. et al. MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: Atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 2018, 12, 751–758.

[22]

Tang, M.; Yin, W. N.; Liu, S. J.; Yu, H. X.; He, Y. H.; Cai, Y. T.; Wang, L. L. Sulfur line vacancies in MoS2 for catalytic hydrogen evolution reaction. Crystals 2022, 12, 1218.

[23]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang. J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[24]

Jin, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.

[25]

Li, S. D.; Zhuang, Z. C.; Xia, L. X.; Zhu, J. X.; Liu, Z. A.; He, R. H.; Luo, W.; Huang, W. Z.; Shi, C. W.; Zhao, Y. et al. Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater. 2022, 66, 160–168.

[26]

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

[27]

Wang, L. L.; Liu, X.; Luo, J. M.; Duan, X. D.; Crittenden, J.; Liu, C. B.; Zhang, S. Q.; Pei, Y.; Zeng, Y. X.; Duan, X. F. Self-optimization of the active site of molybdenum disulfide by an irreversible phase transition during photocatalytic hydrogen evolution. Angew. Chem. 2017, 129, 7718–7722.

[28]

Liu, M. M.; Li, H. X.; Liu, S. J.; Wang, L. L.; Xie, L. B.; Zhuang, Z. C.; Sun, C.; Wang, J.; Tang, M.; Sun, S. J. et al. Tailoring activation sites of metastable distorted 1T'-phase MoS2 by Ni doping for enhanced hydrogen evolution. Nano Res. 2022, 15, 5946–5952.

[29]

Sun, C.; Wang. L. L.; Zhao, W. W.; Xie, L. B.; Wang, J.; Li, J. M.; Li, B. X.; Liu, S. J.; Zhuang, Z. C.; Zhao, Q. Atomic-level design of active site on two-dimensional MoS2 toward efficient hydrogen evolution: Experiment, theory, and artificial intelligence modelling. Adv. Funct. Mater. 2022, 32, 2206163.

[30]

Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, S. J.; Zhao, Q. Oxygen-facilitated dynamic active-site generation on strained MoS2 during photo-catalytic hydrogen evolution. Chem. Eng. J. 2021, 405, 127028.

[31]

Wang, L. L.; Liu, X.; Zhang, Q. F.; Zhou, G.; Pei, Y.; Chen, S. H.; Wang, J.; Rao, A. M.; Yang, H. G.; Lu, B. G. Quasi-one-dimensional Mo chains for efficient hydrogen evolution reaction. Nano Energy 2019, 61, 194–200.

[32]

Wang, L. L.; Zhou, G.; Luo, H.; Zhang, Q. F.; Wang, J.; Zhao, C. W.; Rao, A. M.; Xu, B.; Lu, B. G. Enhancing catalytic activity of tungsten disulfide through topology. Appl. Catal. B:Environ. 2019, 256, 117802.

[33]

Wang, S. H.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Zhuang, Y. L.; Chen, J.; Liu, S. J.; Zhao, Q. Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res. 2022, 15, 4996–5003.

[34]

Fu, Q.; Wang, X. J.; Han, J. C.; Zhong, J.; Zhang, T. R.; Yao, T.; Xu, C. Y.; Gao, T. L; Xi, S. B.; Liang, C. et al. Phase-junction electrocatalysts towards enhanced hydrogen evolution reaction in alkaline media. Angew. Chem. Int. Ed. 2021, 60, 259–200.

[35]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2022, 62, e202212335.

[36]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[37]

Luo, L. X.; Fu, C. H.; Wu, A. M.; Zhuang, Z. C.; Zhu, F. J.; Jiang, F. L.; Shen, S. Y.; Cai, X. Y.; Kang, Q.; Zheng, Z. F. et al. Hydrogen-assisted scalable preparation of ultrathin Pt shells onto surfactant-free and uniform Pd nanoparticles for highly efficient oxygen reduction reaction in practical fuel cells. Nano Res. 2022, 15, 1892–1900.

[38]

Zhuang, Z. C.; Wang, F. F.; Naidu, R.; Chen, Z. L. Biosynthesis of Pd-Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power Sources 2015, 291, 132–137.

[39]

Song, Z. P.; Yi, J. X.; Qi, J.; Zheng, Q.; Zhu, Z. L.; Tao, L.; Cao, Y.; Li, Y.; Gao, Z. Y.; Zhang, R. Z. et al. Line defects in monolayer TiSe2 with adsorption of Pt atoms potentially enable excellent catalytic activity. Nano Res. 2022, 15, 4687–4692.

[40]
Meng, C.; Gao, Y. F.; Zhou, Y.; Sun, K.; Wang, Y. M.; Han, Y.; Zhao, Q. Q.; Chen, X. M.; Hu, H.; Wu, M. B. P-band center theory guided activation of MoS2 basal S sites for pH-universal hydrogen evolution. Nano Res., in press, https://doi.org/10.1007/s12274-022-5287-1.
[41]

Fu, Y.; Shan, Y.; Zhou, G.; Long, L. Y.; Wang, L. L.; Yin, K. B.; Guo, J. H.; Shen, J. C.; Liu, L. Z.; Wu, X. L. Electric strain in dual metal Janus nanosheets induces structural phase transition for efficient hydrogen evolution. Joule 2019, 3, 2955–2967.

[42]

Zhai, L. L.; She, X. J.; Zhuang, L. C.; Li, Y. Y.; Ding, R.; Guo, X. Y.; Zhang, Y. Q.; Zhu, Y.; Xu, K.; Fan, H. J. et al. Modulating built-in electric field via variable oxygen affinity for robust hydrogen evolution reaction in neutral media. Angew. Chem., Int. Ed. 2022, 61, e202116057.

[43]

Lin, Z. Y.; Yang, Y.; Li, M. S.; Huang, H.; Hu, W.; Cheng, L.; Yan, W. S.; Yu, Z. W.; Mao, K. T.; Xia, G. L. et al. Dual graphitic-N doping in a six-membered C-ring of graphene-analogous particles enables an efficient electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 16973–16980.

[44]

Ding, J. Y.; Yang, H.; Zhang, S. S.; Liu, Q.; Cao, H. Q.; Luo, J.; Liu, X. J. Advances in the electrocatalytic hydrogen evolution reaction by metal nanoclusters-based materials. Small 2022, 18, 2204524.

[45]

Chen, D.; Lu, R. H.; Yu, R. H.; Dai, Y. H.; Zhao, H. Y.; Wu, D. L.; Wang, P. Y.; Zhu, J. W.; Pu, Z. H.; Chen, L. et al. Work-function-induced interfacial built-in electric fields in Os-OsSe2 heterostructures for active acidic and alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202208642.

[46]

Li, J. Y.; Hu, J.; Zhang, M. K.; Gou, W. Y.; Zhang, S.; Chen, Z.; Qu, Y. Q.; Ma, Y. Y. A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution. Nat. Commun. 2021, 12, 3502.

[47]

Li, Y.; Wei, X. F.; Chen, L. S.; Shi, J. L.; He, M. Y. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 2019, 10, 5335.

[48]

Chen, J.; Tang, Y. M.; Wang, S. H.; Xie, L. B.; Chang, C.; Cheng, X. L.; Liu, M. M.; Wang, L. L.; Wang, L. H. Ingeniously designed Ni-Mo-S/ZnIn2S4 composite for multi-photocatalytic reaction systems. Chin. Chem. Lett. 2022, 33, 1468–1474.

[49]

Shi, A. Q.; Sun, D. Z.; Zhang, X. M.; Ji, S. L.; Wang, L. L.; Li, X. A.; Zhao, Q.; Niu, X. H. Direct Z-scheme photocatalytic system: Insights into the formative factors of photogenerated carriers transfer channel from ultrafast dynamics. ACS Catal. 2022, 12, 9570–9578.

[50]

Zhu, Y. W.; Chen, J.; Shao, L. H.; Xia, X. N.; Liu, Y. T.; Wang, L. L. Oriented facet heterojunctions on CdS nanowires with high photoactivity and photostability for water splitting. Appl. Catal. B: Environ. 2020, 268, 118744.

[51]

Zhang, M. Y.; Hu, Q. Y.; Ma, K. W.; Ding, Y.; Li, C. Pyroelectric effect in CdS nanorods decorated with a molecular co-catalyst for hydrogen evolution. Nano Energy 2020, 73, 104810.

[52]

Guo, Y. C.; Mao, L.; Tang, Y.; Shang, Q. Q.; Cai, X. Y.; Zhang, J. Y.; Hu, H. L.; Tan, X.; Liu, L. Q.; Wang, H. Y. et al. Concentrating electron and activating H−OH bond of absorbed water on metallic NiCo2S4 boosting photocatalytic hydrogen evolution. Nano Energy 2022, 95, 107028.

[53]

Cheng, X. L.; Wang, L. L.; Xie, L. B.; Sun, C.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Liu, S. J.; Zhao, Q. Defect-driven selective oxidation of MoS2 nanosheets with photothermal effect for photo-catalytic hydrogen evolution reaction. Chem. Eng. J. 2022, 439, 135757.

[54]

Wang, X. H.; Wang, X. H.; Huang, J. F.; Li, S. X.; Meng, A. L.; Li, Z. J. Interfacial chemical bond and internal electric field modulated Z-scheme SV-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat. Commun. 2021, 12, 4112.

[55]

Ding, Q.; Song, B.; Xu, P.; Jin, S. Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compound. Chem 2016, 1, 699–726.

[56]

Zhou, W. M.; Wang, Z. Q.; Huang, H. Q.; Wu, Y. T.; Alothman, A. A.; Ouladsmane, M.; Yamauchi, Y.; Xu, X. T.; An, M.; Wang, L. W. et al. Significant enhancement in hydrogen evolution rate of 2D bismuth oxychloride lamellar membrane photocatalyst with cellulose nanofibers. Chem. Eng. J. 2023, 456, 140933.

[57]

Han, G. Q.; Jin, Y. H.; Burgess, R. A.; Dickenson, N. E.; Cao, X. M.; Sun, Y. J. Visible-light-driven valorization of biomass intermediates integrated with H2 production catalyzed by ultrathin Ni/CdS nanosheets. J. Am. Chem. Soc. 2017, 139, 15584–15587.

[58]

Huang, K. L.; Li, C. H.; Zhang, X. L.; Wang, L.; Wang, W. T.; Meng, X. C. Self-assembly synthesis of phosphorus-doped tubular g-C3N4/Ti3C2 MXene Schottky junction for boosting photocatalytic hydrogen evolution. Green Energy Environ. 2023, 8, 233–245.

[59]

Takata, T.; Jiang, J. Z.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411–414.

[60]

Zhang, D. X.; Liu, Y. H.; Li, L. H.; Li, D.; Jiang, T. Y.; Huang, H.; Jiang, D. L.; Kang, Z. H.; Mao, B. D. Cu5FeS4 quantum dots as a single-component photo-assisted electrocatalyst for efficient hydrogen evolution. J. Mater. Chem. A 2023, 11, 1927–1936.

[61]

Shi, X. W.; Dai, C.; Wang, X.; Hu, J. Y.; Zhang, J. Y.; Zheng, L. X.; Mao, L.; Zheng, H. J.; Zhu, M. S. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 1287.

[62]

Serra, J. M.; Borrás-Morell, J. F.; García-Baños, B.; Balaguer, M.; Plaza-González, P.; Santos-Blasco, J.; Catalán-Martínez, D.; Navarrete, L.; Catalá-Civera, J. M. Hydrogen production via microwave-induced water splitting at low temperature. Nat. Energy 2020, 5, 910–919.

[63]

Garcés-Pineda, F. A.; Blasco-Ahicart, M.; Nieto-Castro, D.; López, N.; Galán-Mascarós, J. R. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 2019, 4, 519–525.

[64]

Wei, C.; Xu, Z. J. The possible implications of magnetic field effect on understanding the reactant of water splitting. Chin. J. Catal. 2022, 43, 148–157.

[65]

Périgo, E. A.; Hemery, G.; Sandre, O.; Ortega, D.; Garaio, E.; Plazaola, F.; Teran, F. J. Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2015, 2, 041302.

[66]

Niether, C.; Faure, S.; Bordet, A.; Deseure, J.; Chatenet, M.; Carrey, J.; Chaudret, B.; Rouet, A. Improved water electrolysis using magnetic heating of FeC-Ni core–shell nanoparticles. Nat. Energy 2018, 3, 476–483.

[67]

Koza, J. A.; Mühlenhoff, S.; Żabiński, P.; Nikrityuk, P. A.; Eckert, K.; Uhlemann, M.; Gebert, A.; Weier, T.; Schultz, L.; Odenbach, S. Hydrogen evolution under the influence of a magnetic field. Electrochim. Acta 2011, 56, 2665–2675.

[68]

Karatza, D.; Konstantopoulos, C.; Chianese, S.; Diplas, S.; Svec, P.; Hristoforou, E.; Musmarra, D. Hydrogen production through water splitting at low temperature over Fe3O4 pellet: Effects of electric power, magnetic field, and temperature. Fuel Process. Technol. 2021, 211, 106606.

[69]

Sambalova, O.; Billeter, E.; Yildirim, O.; Sterzi, A.; Bleiner, D.; Borgschulte, A. Magnetic field enhancement of electrochemical hydrogen evolution reaction probed by magneto-optics. Int. J. Hydrogen Energy 2021, 46, 3346–3353.

[70]

Zhou, W. D.; Chen, M. Y.; Guo, M. M.; Hong, A. J.; Yu, T.; Luo, X. F.; Yuan, C. L.; Lei, W.; Wang, S. G. Magnetic enhancement for hydrogen evolution reaction on ferromagnetic MoS2 catalyst. Nano Lett. 2020, 20, 2923–2930.

[71]

Banu, A. A.; Karazhanov, S. Z.; Kumar, K. V.; Jose, S. P. Platinum doped iron carbide for the hydrogen evolution reaction: The effects of charge transfer and magnetic moment by first-principles approach. Int. J. Hydrogen Energy 2020, 45, 31825–31840.

[72]

Wu, Y. Z.; Yang, D. Y.; Zhang, Y.; Jiao, S. L.; Tang, W. C.; Wang, Z. K.; Wu, N. D.; Wang, Y.; Zhong, W.; Zhang, A. M. et al. Integrated unit-cell-thin MXene and Schottky electric field into piezo-photocatalyst for enhanced photocarrier separation and hydrogen evolution. Chem. Eng. J. 2022, 439, 135640.

[73]

Su, R.; Hsain, H. A.; Wu, M.; Zhang, D. W.; Hu, X. H.; Wang, Z. P.; Wang, X. J.; Li, F. T.; Chen, X. M.; Zhu, L. N. et al. Nano-ferroelectric for high efficiency overall water splitting under ultrasonic vibration. Angew. Chem., Int. Ed. 2019, 58, 15076–15081.

[74]

Zhang, C. X.; Lei, D.; Xie, C. F.; Hang, X. S.; He, C. X.; Jiang, H. L. Piezo-photocatalysis over metal-organic frameworks: Promoting photocatalytic activity by piezoelectric effect. Adv. Mater. 2021, 33, 2106308.

[75]

Zhao, X.; Liu, M. J.; Wang, Y. C.; Xiong, Y.; Yang, P. Y.; Qin, J. Q.; Xiong, X.; Lei, Y. P. Designing a built-in electric field for efficient energy electrocatalysis. ACS Nano 2022, 16, 19959–19979.

[76]

Wang, J. H.; Yan, M. Y.; Zhao, K. N.; Liao, X. B.; Wang, P. Y.; Pan, X. L.; Yang, W.; Mai, L. Q. Field effect enhanced hydrogen evolution reaction of MoS2 nanosheets. Adv. Mater. 2017, 29, 1604464.

[77]

Wu, Y. C.; Li, D. F.; Wu, C. L.; Hwang, H. Y.; Cui, Y. Electrostatic gating and intercalation in 2D materials. Nat. Rev. Mater. 2023, 8, 41–53.

[78]

Huang, J. Z.; Zhuang, Z. C.; Zhao, Y.; Chen, J. Q.; Zhuo, Z. W.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Back-gated van der waals heterojunction manipulates local charges toward fine-tuning hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202203522.

[79]

Liu, Y.; Feng, Q. G.; Liu, W.; Li, Q.; Wang, Y. C.; Liu, B.; Zheng, L. R.; Wang, W.; Huang, L.; Chen, L. M. et al. Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification. Nano Energy 2021, 81, 105641.

[80]

Chen, J. Q.; Lu, N.; Zhao, Y.; Huang, J. Z.; Gan, X. J.; Chen, X. Z.; Yang, Z. H.; Wen, Q. L.; Zhai, T. Y.; Liu, Y. W. On-chip microdevice unveils reactant enrichment effect dominated electrocatalysis activity in molecular-linked catalysts. Nano Lett. 2022, 22, 10154–10162.

[81]

He, Y. M.; He, Q. Y.; Wang, L. Q.; Zhu, C.; Golani, P.; Handoko, A. D.; Yu, X. C.; Gao, C. T.; Ding, M. N.; Wang, X. W. et al. Self-gating in semiconductor electrocatalysis. Nat. Mater. 2019, 18, 1098–1104.

[82]

Wu, Y. C.; Ringe, S.; Wu, C. L.; Chen, W.; Yang, A. K.; Chen, H.; Tang, M.; Zhou, G. M.; Hwang, H. Y.; Chan, K. R. et al. A two-dimensional MoS2 catalysis transistor by solid-state ion gating manipulation and adjustment (SIGMA). Nano Lett. 2019, 19, 7293–7300.

[83]

Pan, Y. H.; Wang, X. Z.; Zhang, W. Y.; Tang, L. Y.; Mu, Z. Y.; Liu, C.; Tian, B. L.; Fei, M. C.; Sun, Y. M.; Su, H. H. et al. Boosting the performance of single-atom catalysts via external electric field polarization. Nat. Commun. 2022, 13, 3063.

[84]

Yan, M. Y.; Pan, X. L.; Wang, P. Y.; Chen, F.; He, L.; Jiang, G. P.; Wang, J. H.; Liu, J. Z.; Xu, X.; Liao, X. B. et al. Field-effect tuned adsorption dynamics of VSe2 nanosheets for enhanced hydrogen evolution reaction. Nano Lett. 2017, 17, 4109–4115.

[85]

Pell, W. G.; Conway, B. E.; Marincic, N. Analysis of non-uniform charge/discharge and rate effects in porous carbon capacitors containing sub-optimal electrolyte concentrations. J. Electroanal. Chem. 2020, 491, 9–21.

[86]

Guo, S. H.; Li, X. H.; Li, J.; Wei, B. Q. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nat. Commun. 2021, 12, 1343.

[87]

Zhang, Y. Z.; Guo, P.; Guo, S. H.; Xin, X.; Wang, Y. J.; Huang, W. J.; Wang, M. H.; Yang, B. W.; Sobrido, A. J.; Ghasemi, J. B. et al. Gradient heating epitaxial growth gives well lattice-matched Mo2C−Mo2N heterointerfaces that boost both electrocatalytic hydrogen evolution and water vapor splitting. Angew. Chem., Int. Ed. 2022, 61, e202209703.

[88]

Song, L.; Liang, Z. X.; Ma, Z.; Zhang, Y.; Chen, J. Y.; Adzic, R. R.; Wang, J. X. Temperature-dependent kinetics and reaction mechanism of ammonia oxidation on Pt, Ir, and PtIr alloy catalysts. J. Electrochem. Soc. 2018, 165, J3095.

[89]

Qu, J.; Li, Y.; Li, F.; Li, T. M.; Wang, X. Y.; Yin, Y.; Ma, L. B.; Schmidt, O. G.; Zhu, F. Direct thermal enhancement of hydrogen evolution reaction of on-chip monolayer MoS2. ACS Nano 2022, 16, 2921–2927.

[90]

Zhou, P.; Navid, I. A.; Ma, Y. J.; Xiao, Y. X.; Wang, P.; Ye, Z. W.; Zhou, B. W.; Sun, K.; Mi, Z. T. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 2023, 613, 66–70.

[91]

Wu, X. H.; Wang, J. H.; Wang, Z. Y.; Sun, F.; Liu, Y. Z.; Wu, K. F.; Meng, X. Y.; Qiu, J. S. Boosting the electrocatalysis of MXenes by plasmon-induced thermalization and hot-electron injection. Angew. Chem., Int. Ed. 2021, 60, 9416–9420.

[92]

Li, Z. L.; Zhuang, Z. C.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M. C.; Zhu, J. X.; Lang, Z. Q.; Feng, S. H.; Chen, W. et al. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 2018, 30, 1803220.

[93]

Zheng, Y. R.; Wu, P.; Gao, M. R.; Zhang, X. L.; Gao, F. Y.; Ju, H. X.; Wu, R.; Gao, Q.; You, R.; Huang, W. X. et al. Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nat. Commun. 2018, 9, 2533.

[94]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[95]

Chen, Y. Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z. H.; Wan, L. J.; Hu, J. S. Self-templated fabrication of MoNi4/MoO3−x nanorod arrays with dual active components for highly efficient hydrogen evolution. Adv. Mater. 2017, 29, 1703311.

[96]

Duan, J. J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341.

[97]

Zhou, G.; Shan, Y.; Wang, L. L.; Hu, Y. Y.; Guo, J. H.; Hu, F. R.; Shen, J. C.; Gu, Y.; Cui, J. T.; Liu, L. Z. et al. Photoinduced semiconductor-metal transition in ultrathin troilite FeS nanosheets to trigger efficient hydrogen evolution. Nat. Commun. 2019, 10, 399.

[98]

Ricci, F.; Bousquet, E. Unveiling the room-temperature magnetoelectricity of troilite FeS. Phys. Rev. Lett. 2016, 116, 227601.

[99]

Gosselin, J. R.; Townsend, M. G.; Tremblay, R. J. Electric anomalies at the phase transition in FeS. Solid State Commun. 1976, 19, 799–803.

[100]

Li, F.; Franzen, H. F. Phase transitions in near stoichiometric iron sulfide. J. Alloys Compd. 1996, 238, 73–80.

[101]

Li, J.; Pei, Q.; Wang, R. Y.; Zhou, Y.; Zhang, Z. M.; Cao, Q. Q.; Wang, D. H.; Mi, W. B.; Du, Y. W. Enhanced photocatalytic performance through magnetic field boosting carrier transport. ACS Nano 2018, 12, 3351–3359.

[102]

Li, H. D.; Sang, Y. H.; Chang, S. J.; Huang, X.; Zhang, Y.; Yang, R. S.; Jiang, H. D.; Liu, H.; Wang, Z. L. Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. Nano Lett. 2015, 15, 2372–2379.

[103]

Shi, Q. J.; Zhang, M.; Zhang, Z. M.; Li, Y. X.; Qu, Y.; Liu, Z. Q.; Yang, J. L.; Xie, M. Z.; Han, W. H. Energy and separation optimization of photogenerated charge in BiVO4 quantum dots by piezo-potential for efficient gaseous pollutant degradation. Nano Energy 2020, 69, 104448.

[104]

Gao, W. Q.; Lu, J. B.; Zhang, S.; Zhang, X. F.; Wang, Z. X.; Qin, W.; Wang, J. J.; Zhou, W. J.; Liu, H.; Sang, Y. H. Suppressing photoinduced charge recombination via the Lorentz force in a photocatalytic system. Adv. Sci. 2019, 6, 1901244.

[105]

Gao, W. Q.; Liu, Q. L.; Zhang, S.; Yang, Y. Y.; Zhang, X. F.; Zhao, H.; Qin, W.; Zhou, W. J.; Wang, X. N.; Liu, H. et al. Electromagnetic induction derived micro-electric potential in metal-semiconductor core–shell hybrid nanostructure enhancing charge separation for high performance photocatalysis. Nano Energy 2020, 71, 104624.

[106]

Kiuchi, D.; Matsushima, H.; Fukunaka, Y.; Kuribayashi, K. Ohmic resistance measurement of bubble froth layer in water electrolysis under microgravity. J. Electrochem. Soc. 2006, 153, E138–E143.

[107]
Yin, W. N.; Cai, Y. T.; Xie, L. B.; Huang, H.; Zhu, E. C.; Pan, J. A.; Bu, J. Q.; Chen, H.; Yuan, Y.; Zhuang, Z. C. et al. Revisited electrochemical gas evolution reactions from the perspective of gas bubbles. Nano Res., in press, https://doi.org/10.1007/s12274-022-5133-5.
[108]

Nagai, N.; Takeuchi, M.; Kimura, T.; Oka, T. Existence of optimum space between electrodes on hydrogen production by water electrolysis. Int. J. Hydrogen Energy 2003, 28, 35–41.

[109]

Elias, L.; Hegde, A. C. Effect of magnetic field on HER of water electrolysis on Ni-W alloy. Electrocatalysis 2017, 8, 375–382.

[110]

Rodgers, C. T.; Hore, P. J. Chemical magnetoreception in birds: The radical pair mechanism. Proc. Natl. Acad. Sci. USA 2009, 106, 353–360.

[111]

Buchachenko, A. L.; Berdinsky, V. L. Electron spin catalysis. Chem. Rev. 2002, 102, 603–612.

[112]

Zeng, W.; Jiang, Z. Z.; Gong, X. G.; Hu, C.; Luo, X. F.; Lei, W.; Yuan, C. L. Atomic magnetic heating effect enhanced hydrogen evolution reaction of Gd@MoS2 single-atom catalysts. Small 2023, 19, 2206155.

[113]

Jiang, X. L.; Chen, Y. N.; Zhang, X. Z.; You, F.; Yao, J. L.; Yang, H.; Xia, B. Y. Magnetic field-assisted construction and enhancement of electrocatalysts. ChemSusChem 2022, 15, e202201551.

[114]

Kim, D.; Efe, I.; Torlakcik, H.; Terzopoulou, A.; Veciana, A.; Siringil, E.; Mushtaq, F.; Franco, C.; Von Arx, D.; Sevim, S. et al. Magnetoelectric effect in hydrogen harvesting: Magnetic field as a trigger of catalytic reactions. Adv. Mater. 2022, 34, 2110612.

[115]

Cai, L.; Huo, J. T.; Zou, P.; Li, G. W.; Liu, J.; Xu, W.; Gao, M.; Zhang, S. Z.; Wang, J. Q. Key role of Lorentz excitation in the electromagnetic-enhanced hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2022, 14, 15243–15249.

[116]

Su, M. X.; Zhou, W. D.; Liu, L.; Chen, M. Y.; Jiang, Z. Z.; Luo, X. F.; Yang, Y.; Yu, T.; Lei, W.; Yuan, C. L. Micro eddy current facilitated by screwed MoS2 structure for enhanced hydrogen evolution reaction. Adv. Funct. Mater. 2022, 32, 2111067.

[117]

Gong, X. G.; Jiang, Z. Z.; Zeng, W.; Hu, C.; Luo, X. F.; Lei, W.; Yuan, C. L. Alternating magnetic field induced magnetic heating in ferromagnetic cobalt single-atom catalysts for efficient oxygen evolution reaction. Nano Lett. 2022, 22, 9411–9417.

[118]

Van Der Heijden, O.; Park, S.; Eggebeen, J. J. J.; Koper, M. T. M. Non-kinetic effects convolute activity and Tafel analysis for the alkaline oxygen evolution reaction on NiFeOOH electrocatalysts. Angew. Chem., Int. Ed. 2023, 62, e202216477.

[119]

Ehrnst, Y.; Sherrell, P. C.; Rezk, A. R.; Yeo, L. Y. Acoustically-induced water frustration for enhanced hydrogen evolution reaction in neutral electrolytes. Adv. Energy Mater. 2023, 13, 2203164.

[120]

Guo, S. H.; Su, J.; Luo, H.; Duan, X. C.; Shen, Q. Q.; Xue, J. B.; Wei, B. Q.; Zhang, X. M. Boosting photocatalytic hydrogen evolution reaction by the improved mass flow and energy flow process based on ultrasound waves. ACS Catal. 2023, 13, 296–307.

Nano Research
Pages 8638-8654
Cite this article:
Li J, Yin W, Pan J, et al. External field assisted hydrogen evolution reaction. Nano Research, 2023, 16(7): 8638-8654. https://doi.org/10.1007/s12274-023-5610-5
Topics:

1175

Views

32

Crossref

31

Web of Science

31

Scopus

0

CSCD

Altmetrics

Received: 19 January 2023
Revised: 12 February 2023
Accepted: 22 February 2023
Published: 11 April 2023
© Tsinghua University Press 2023
Return