AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Controllable construction of La2Li0.5Co0.5O4 multifunctional “armor” to stabilize Li-rich layered oxide cathode for high-performance lithium-ion batteries

Xiaoyang Deng1,§Mi Li1,§Zizai Ma2,3Xiaoguang Wang1,2( )
Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, China
College of Chemistry, Taiyuan University of Technology, Taiyuan 030024, China

§ Xiaoyang Deng and Mi Li contributed equally to this work.

Show Author Information

Graphical Abstract

Li1.2Mn0.54Ni0.13Co0.13O2 cathode is modified through La2Li0.5Co0.5O4 coating. The modified cathode demonstrates excellent cycling stability and rate performance.

Abstract

Lithium-rich manganese-based cathodes (LR) are valuable cathode materials for the next generation of lithium-ion batteries (LIBs) with high-energy density. However, the fast voltage/capacity decay on cycling is the major obstacle for the practical application induced by the less-than-ideal anionic redox reactions and structure distortion. Herein, in order to tackle these challenges, a perovskite-like La2Li0.5Co0.5O4 (LLCO) material is selected as protective surface to stabilize the Li1.2Mn0.54Ni0.13Co0.13O2 (LR) substrate through wet chemical coating method. Versatile structure/phase characterizations and electrochemical tests exhibit that the LLCO can not only minish the oxygen evolution and enhance the structure stability, but also restrain the electrolyte corrosion and increase the mechanical strength of cathode materials. Moreover, the coated LLCO with high electronic/ionic conductivity dramatically accelerates the energy storage kinetic, thereby displaying the improved rate performance. Specifically, the optimized LR@LLCO sample (1LLCO) exhibits a high capacity of 250.6 mAh·g−1 after 100 cycles at 0.1 C and excellent capacity retention of 82.6% after 200 cycles at 2 C. This work provides a new idea for the modification of LR cathodes toward commercial high-performance LIBs.

Electronic Supplementary Material

Download File(s)
12274_2023_5613_MOESM1_ESM.pdf (719.8 KB)

References

[1]

He, W.; Guo, W. B.; Wu, H. L.; Lin, L.; Liu, Q.; Han, X.; Xie, Q. S.; Liu, P. F.; Zheng, H. F.; Wang, L. S. et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv. Mater. 2021, 33, 2005937.

[2]

Chen, Y. F.; Liu, Y. C.; Zhang, J. C.; Zhu, H.; Ren, Y.; Wang, W.; Zhang, Q.; Zhang, Y.; Yuan, Q. H.; Chen, G. X. et al. Constructing O2/O3 homogeneous hybrid stabilizes Li-rich layered cathodes. Energy Storage Mater. 2022, 51, 756–763.

[3]

Chen, B. Z.; Zhao, B. C.; Zhou, J. F.; Fang, Z. T.; Huang, Y. N.; Zhu, X. B.; Sun, Y. P. Surface modification with oxygen vacancy in Li-rich layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries. J. Mater. Sci. Technol. 2019, 35, 994–1002.

[4]

Liu, Y. C.; Chen, Y. F.; Wang, J.; Wang, W.; Ding, Z. Y.; Li, L. Y.; Zhang, Y.; Deng, Y. D.; Wu, J. W.; Chen, Y. N. Hierarchical yolk–shell structured Li-rich cathode boosting cycling and voltage stabled LIBs. Nano Res. 2022, 15, 3178–3186.

[5]

Liu, Y. C.; Zhu, H.; Zhu, H. K.; Ren, Y.; Zhu, Y. Z.; Huang, Y. L.; Dai, L.; Dou, S. M.; Xu, J.; Sun, C. J. et al. Modulating the surface ligand orientation for stabilized anionic redox in Li-rich oxide cathodes. Adv. Energy Mater. 2021, 11, 2003479.

[6]

Liu, T. C.; Liu, J. J.; Li, L. X.; Yu, L.; Diao, J. C.; Zhou, T.; Li, S. N.; Dai, A.; Zhao, W. G.; Xu, S. Y. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 2022, 606, 305–312.

[7]

Gou, X. X.; Hao, Z. K.; Hao, Z. M.; Yang, G. J.; Yang, Z.; Zhang, X. Y.; Yan, Z. H.; Zhao, Q.; Chen, J. In situ surface self-reconstruction strategies in Li-rich Mn-based layered cathodes for energy-dense Li-ion batteries. Adv. Funct. Mater. 2022, 32, 2112088.

[8]

Zhang, C. X.; Feng, Y. Z.; Wei, B.; Liang, C. P.; Zhou, L. J.; Ivey, D. G.; Wang, P.; Wei, W. F. Heteroepitaxial oxygen-buffering interface enables a highly stable cobalt-free Li-rich layered oxide cathode. Nano Energy 2020, 75, 104995.

[9]

Si, M. T.; Wang, D. D.; Zhao, R.; Pan, D.; Zhang, C.; Yu, C. Y.; Lu, X.; Zhao, H. L.; Bai, Y. Local electric-field-driven fast Li diffusion kinetics at the piezoelectric LiTaO3 modified Li-rich cathode–electrolyte interphase. Adv. Sci. 2020, 7, 1902538.

[10]

Wang, E. R.; Zhao, Y.; Xiao, D. D.; Zhang, X.; Wu, T. H.; Wang, B. Y.; Zubair, M.; Li, Y. Q.; Sun, X. L.; Yu, H. J. Composite nanostructure construction on the grain surface of Li-rich layered oxides. Adv. Mater. 2020, 32, 1906070.

[11]

He, W. T.; Zhang, C. X.; Wang, M. Y.; Wei, B.; Zhu, Y. L.; Wu, J. H.; Liang, C. P.; Chen, L. B.; Wang, P.; Wei, W. F. Countering voltage decay, redox sluggishness, and calendering incompatibility by near-zero-strain interphase in lithium-rich, manganese-based layered oxide electrodes. Adv. Funct. Mater. 2022, 32, 2200322.

[12]

Boivin, E.; Guerrini, N.; House, R. A.; Lozano, J. G.; Jin, L. Y.; Rees, G. J.; Somerville, J. W.; Kuss, C.; Roberts, M. R.; Bruce, P. G. The role of Ni and Co in suppressing O-loss in Li-rich layered cathodes. Adv. Funct. Mater. 2021, 31, 2003660.

[13]

Lin, T. E.; Schulli, T. U.; Hu, Y. X.; Zhu, X. B.; Gu, Q. F.; Luo, B.; Cowie, B.; Wang, L. Z. Faster activation and slower capacity/voltage fading: A bifunctional urea treatment on lithium-rich cathode materials. Adv. Funct. Mater. 2020, 30, 1909192.

[14]

Zheng, J. M.; Gu, M.; Xiao, J.; Polzin, B. J.; Yan, P. F.; Chen, X. L.; Wang, C. M.; Zhang, J. G. Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials. Chem. Mater. 2014, 26, 6320–6327.

[15]

Su, Y. F.; Yuan, F. Y.; Chen, L.; Lu, Y.; Dong, J. Y.; Fang, Y. Y.; Chen, S.; Wu, F. Enhanced high-temperature performance of Li-rich layered oxide via surface heterophase coating. J. Energy Chem. 2020, 51, 39–47.

[16]

Shi, S. J.; Tu, J. P.; Tang, Y. Y.; Liu, X. Y.; Zhang, Y. Q.; Wang, X. L.; Gu, C. D. Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method. Electrochim. Acta 2013, 88, 671–679.

[17]

Wen, X. F.; Liang, K.; Tian, L. Y.; Shi, K. Y.; Zheng, J. S. Al2O3 coating on Li1.256Ni0.198Co0.082Mn0.689O2.25 with spinel–structure interface layer for superior performance lithium ion batteries. Electrochim. Acta 2018, 260, 549–556.

[18]

Wu, F.; Li, Q.; Chen, L.; Zhang, Q. Y.; Wang, Z. R.; Lu, Y.; Bao, L. Y.; Chen, S.; Su, Y. F. Improving the structure stability of LiNi0.8Co0.1Mn0.1O2 by surface perovskite-like La2Ni0.5Li0.5O4 self-assembling and subsurface La3+ doping. ACS Appl. Mater. Interfaces 2019, 11, 36751–36762.

[19]

Heo, K.; Lee, J.; Im, J.; Kim, M. Y.; Kim, H. S.; Ahn, D.; Kim, J.; Lim, J. A composite cathode material encapsulated by amorphous garnet-type solid electrolyte and self-assembled La2(Ni0.5Li0.5)O4 nanoparticles for all-solid-state batteries. J. Mater. Chem. A 2020, 8, 22893–22906.

[20]

Yang, J. C.; Chen, Y. X.; Li, Y. J.; Deng, S. Y.; Chang, S. H.; Cao, G. L.; Zhang, D. W.; Wang, S. L.; Li, W. A simple strategy to prepare the La2Li0.5Al0.5O4 modified high-performance Ni-rich cathode material. Mater. Chem. Phys. 2020, 249, 123135.

[21]

Ghosh, P.; Mahanty, S.; Basu, R. N. Lanthanum-doped LiCoO2 cathode with high rate capability. Electrochim. Acta 2009, 54, 1654–1661.

[22]

Yin, H. X.; Long, Y.; Liu, Y. J.; Cui, Y. C.; Hao, C. C.; Lei, Q. Q. Effect of La2Li0.5Co0.5O4 in semiconductive nanocomposites on suppression of space charge injection to the insulating medium for high-voltage direct current cables. Mater. Lett. 2021, 296, 129895.

[23]

Shi, H. C.; Zeng, T. Y.; Zhang, H. W.; Zhou, Y.; Su, M. R.; Li, X. W.; Zhang, P. P.; Dou, A. C.; Naveed, A.; Liu, Y. J. Enhanced structure and electrochemical stability of single crystal nickel-rich cathode material by La2Li0.5Co0.5O4 surface coating. Ceram. Int. 2022, 48, 17548–17555.

[24]

Xie, Y.; Hu, X. Y.; Shi, N.; Peng, R. R.; Chen, M.; Xia, C. R. La-doped Ba0.5Sr0.5Co0.8Fe0.2O3-d as cathode for protonic-conducting solid oxide fuel cells with enhanced structure stability. ECS Trans. 2021, 103, 1525–1535.

[25]

Li, M.; Deng, X. Y.; Wang, Z. X.; Liu, K.; Ma, Z. Z.; Wang, J. X.; Wang, X. G. Heterostructured lithium-rich layered oxides core@spinel-MgAl2O4 shell as high-performance cathode for lithium-ion batteries. Appl. Surf. Sci. 2022, 592, 153328.

[26]

Liu, P. F.; Zhang, H.; He, W.; Xiong, T. F.; Cheng, Y.; Xie, Q. S.; Ma, Y. T.; Zheng, H. F.; Wang, L. S.; Zhu, Z. Z. et al. Lithium deficiencies engineering in Li-rich layered oxide Li1.098Mn0.533Ni0.113Co0.138O2 for high-stability cathode. J. Am. Chem. Soc. 2019, 141, 10876–10882.

[27]

Li, S. Y.; Fu, X. L.; Liang, Y. W.; Wang, S. X.; Zhou, X. A.; Dong, H.; Tuo, K. Y.; Gao, C. K.; Cui, X. L. Enhanced structural stability of boron-doped layered@spinel@carbon heterostructured lithium-rich manganese-based cathode materials. ACS Sustainable Chem. Eng. 2020, 8, 9311–9324.

[28]

Wu, B.; Yang, X. K.; Jiang, X.; Zhang, Y.; Shu, H. B.; Gao, P.; Liu, L.; Wang, X. Y. Synchronous tailoring surface structure and chemical composition of Li-rich-layered oxide for high-energy lithium-ion batteries. Adv. Funct. Mater. 2018, 28, 1803392.

[29]

Chen, J.; Zou, G. Q.; Deng, W. T.; Huang, Z. D.; Gao, X.; Liu, C.; Yin, S. Y.; Liu, H. Q.; Deng, X. L.; Tian, Y. et al. Pseudo-bonding and electric-field harmony for Li-rich Mn-based oxide cathode. Adv. Funct. Mater. 2020, 30, 2004302.

[30]

Lan, X. W.; Li, Y. Q.; Guo, S. T.; Yu, L.; Xin, Y.; Liu, Z. F.; Hu, X. L. Stabilizing Li-rich layered cathode materials by nanolayer-confined crystal growth for Li-ion batteries. Electrochim. Acta 2020, 333, 135466.

[31]

Yu, R. Z.; Zhang, Z. J.; Jamil, S.; Chen, J. C.; Zhang, X. H.; Wang, X. Y.; Yang, Z. H.; Shu, H. B.; Yang, X. K. Effects of nanofiber architecture and antimony doping on the performance of lithium-rich layered oxides: Enhancing lithium diffusivity and lattice oxygen stability. ACS Appl. Mater. Interfaces 2018, 10, 16561–16571.

[32]

Hu, S. J.; Li, Y.; Chen, Y. H.; Peng, J. M.; Zhou, T. F.; Pang, W. K.; Didier, C.; Peterson, V. K.; Wang, H. Q.; Li, Q. Y. et al. Insight of a phase compatible surface coating for long-durable Li-rich layered oxide cathode. Adv. Energy Mater. 2019, 9, 1901795.

[33]

Zhang, C. X.; Wei, B.; Wang, M. Y.; Zhang, D. T.; Uchiyama, T.; Liang, C. P.; Chen, L. B.; Uchimoto, Y.; Zhang, R. F.; Wang, P. et al. Regulating oxygen covalent electron localization to enhance anionic redox reversibility of lithium-rich layered oxide cathodes. Energy Storage Mater. 2022, 46, 512–522.

[34]

Karuppasamy, K.; Rabani, I.; Vikraman, D.; Bathula, C.; Theerthagiri, J.; Bose, R.; Yim, C. J.; Kathalingam, A.; Seo, Y. S.; Kim, H. S. ZIF-8 templated assembly of La3+-anchored ZnO distorted nano-hexagons as an efficient active photocatalyst for the detoxification of rhodamine B in water. Environ. Pollut. 2021, 272, 116018.

[35]

Ding, X. K.; Luo, D.; Cui, J. X.; Xie, H. X.; Ren, Q. Q.; Lin, Z. An ultra-long-life lithium-rich Li1.2Mn0.6Ni0.2O2 cathode by three-in-one surface modification for lithium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 7778–7782.

[36]

Lei, Y. K.; Elias, Y.; Han, Y. K.; Xiao, D. D.; Lu, J.; Ni, J.; Zhang, Y. C.; Zhang, C. M.; Aurbach, D.; Xiao, Q. F. Mitigation of oxygen evolution and phase transition of Li-rich Mn-based layered oxide cathodes by coating with oxygen-deficient perovskite compounds. ACS Appl. Mater. Interfaces 2022, 14, 49709–49718.

[37]

Cui, S. L.; Zhang, X.; Wu, X. W.; Liu, S.; Zhou, Z.; Li, G. R.; Gao, X. P. Understanding the structure–performance relationship of lithium-rich cathode materials from an oxygen-vacancy perspective. ACS Appl. Mater. Interfaces 2020, 12, 47655–47666.

[38]

Yu, Y.; Yang, Z.; Zhong, J. J.; Liu, Y. Y.; Li, J. L.; Wang, X. D.; Kang, F. Y. A simple dual-ion doping method for stabilizing Li-rich materials and suppressing voltage decay. ACS Appl. Mater. Interfaces 2020, 12, 13996–14004.

[39]

Huang, C.; Wang, Z. J.; Fang, Z. Q.; Zhao, S. X.; Ci, L. J. Achieving high initial Coulombic efficiency and low voltage dropping in Li-rich Mn-based cathode materials by metal-organic frameworks-derived coating. J. Power Sources 2021, 499, 229967.

[40]

Huang, C.; Fang, Z. Q.; Wang, Z. J.; Zhao, J. W.; Zhao, S. X.; Ci, L. J. Accelerating the activation of Li2MnO3 in Li-rich high-Mn cathodes to improve its electrochemical performance. Nanoscale 2021, 13, 4921–4930.

[41]

Liu, Q.; Su, X.; Lei, D.; Qin, Y.; Wen, J. G.; Guo, F. M.; Wu, Y. A.; Rong, Y. C.; Kou, R. H.; Xiao, X. H. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 2018, 3, 936–943.

[42]

Ku, L.; Cai, Y. X.; Ma, Y. T.; Zheng, H. F.; Liu, P. F.; Qiao, Z. S.; Xie, Q. S.; Wang, L. S.; Peng, D. L. Enhanced electrochemical performances of layered-spinel heterostructured lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials. Chem. Eng. J. 2019, 370, 499–507.

[43]

Zuo, C. J.; Hu, Z. X.; Qi, R.; Liu, J. J.; Li, Z. B.; Lu, J. L.; Dong, C.; Yang, K.; Huang, W. Y.; Chen, C. et al. Double the capacity of manganese spinel for lithium-ion storage by suppression of cooperative Jahn–Teller distortion. Adv. Energy Mater. 2020, 10, 2000363.

[44]

Fu, C. C.; Wang, J. Y.; Wang, J. F.; Meng, L. L.; Zhang, W. M.; Li, X. T.; Li, L. P. A LiPF6-electrolyte-solvothermal route for the synthesis of LiF/LixPFyOz-coated Li-Rich cathode materials with enhanced cycling stability. J. Mater. Chem. A 2019, 7, 23149–23161.

Nano Research
Pages 10634-10643
Cite this article:
Deng X, Li M, Ma Z, et al. Controllable construction of La2Li0.5Co0.5O4 multifunctional “armor” to stabilize Li-rich layered oxide cathode for high-performance lithium-ion batteries. Nano Research, 2023, 16(7): 10634-10643. https://doi.org/10.1007/s12274-023-5613-2
Topics:

778

Views

14

Crossref

13

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 11 December 2022
Revised: 23 February 2023
Accepted: 23 February 2023
Published: 18 April 2023
© Tsinghua University Press 2023
Return