AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Rational design and synthesis of nanosheets self-assembled hierarchical flower-ball-like CuFeS2 for boosted wide temperature sodium-ion batteries

Ge Sun1,§Hezhe Lin1,§Ruiyuan Tian1Zhixuan Wei1Xiaoqi Wang2Xu Jin2Shiyu Yao1( )Gang Chen1Zexiang Shen1,3Fei Du1( )
Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
PetroChina, Res Inst Petr Explorat & Dev RIPED, Beijing 100083, China
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

§ Ge Sun and Hezhe Lin contributed equally to this work.

Show Author Information

Graphical Abstract

Nanosheets self-assembled hierarchical F-CuFeS2@reduced graphene oxide (RGO) composite was successfully obtained by a concise two-step solvothermal strategy. Owing to the unique microstructure with large active reaction interfaces and shortened diffusion pathway for both Na+ ions and electrons, F-CuFeS2@RGO delivers a high reversible specific capacity of 559 mAh·g−1 at 0.1 A·g−1, excellent rate-capability with 455 mAh·g−1 at 5 A·g−1, and outstanding cyclic stability over 4800 cycles with no decay.

Abstract

Nano-structure designs with conductive networks have been demonstrated as an efficient strategy to boost sodium storage properties for transition metal sulfides. Herein, an exquisite nanosheets self-assembled hierarchical flower-ball-like CuFeS2 embedded into the reduced graphene oxide (RGO) nanosheet matrix (F-CuFeS2@RGO) is fabricated via a concise two-step solvothermal method. Such a well-designed architecture affords increased active reaction interfaces and enhanced mixed ionic/electronic conductivity. Meanwhile, the external RGO matrix can effectively alleviate the volume expansion and create a stable structure during long cycles. As a result, the composite material exhibits a high reversible capacity of 559 mAh·g−1 at 0.1 A·g−1, a superior rate capability of 455 mAh·g−1 at 5 A·g−1 and excellent cyclic stability with 96% capacity retention after 4800 cycles at 5 A·g−1, among the best in the state-of-the-art transition metal sulfide anodes. Especially, F-CuFeS2@RGO delivers outstanding low-temperature performances with a high capacity retention of 100% and 91% at −20 and −40 °C, respectively, over 200 cycles. The proposed hierarchical structure fabrication paves a new direction in the design of high-performance electrodes for all-temperature energy storage applications.

Electronic Supplementary Material

Download File(s)
12274_2023_5614_MOESM1_ESM.pdf (2.1 MB)

References

[1]

Delmas, C. Sodium and sodium-ion batteries: 50 years of research. Adv. Energy Mater. 2018, 8, 1703137.

[2]

Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013.

[3]

Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.

[4]

Liu, P.; Yi, H. T.; Chen, X. C.; Zhu, K. J.; Li, Z. P.; Sun, Z. Q.; Jiao, L. F. Hierarchical engineering for high-energy-oriented sodium-ion batteries. Acc. Mater. Res. 2022, 3, 672–684.

[5]

Lao, M. M.; Zhang, Y.; Luo, W. B.; Yan, Q. Y.; Sun, W. P.; Dou, S. X. Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 2017, 29, 1700622.

[6]

Ni, J. F.; Li, L.; Lu, J. Phosphorus: An anode of choice for sodium-ion batteries. ACS Energy Lett. 2018, 3, 1137–1144.

[7]

Zhang, T. Y.; Ran, F. Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery. Adv. Funct. Mater. 2021, 31, 2010041.

[8]

Fang, Y. J.; Luan, D. Y.; Lou, X. W. Recent advances on mixed metal sulfides for advanced sodium-ion batteries. Adv. Mater. 2020, 32, 2002976.

[9]

Zhang, L.; Wei, Z. X.; Yao, S. Y.; Gao, Y.; Jin, X.; Chen, G.; Shen, Z. X.; Du, F. Polymorph engineering for boosted volumetric Na-ion and Li-ion storage. Adv. Mater. 2021, 33, 2100210.

[10]

Shan, Y. Y.; Li, Y.; Pang, H. Applications of tin sulfide-based materials in lithium-ion batteries and sodium-ion batteries. Adv. Funct. Mater. 2020, 30, 2001298.

[11]

Ali, Z.; Zhang, T.; Asif, M.; Zhao, L. N.; Yu, Y.; Hou, Y. L. Transition metal chalcogenide anodes for sodium storage. Mater. Today 2020, 35, 131–167.

[12]

Geng, P. B.; Zheng, S. S.; Tang, H.; Zhu, R. M.; Zhang, L.; Cao, S.; Xue, H. G.; Pang, H. Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater. 2018, 8, 1703259.

[13]

Fang, Y. J.; Guan, B. Y.; Luan, D. Y.; Lou, X. W. Synthesis of CuS@CoS2 double-shelled nanoboxes with enhanced sodium storage properties. Angew. Chem., Int. Ed. 2019, 58, 7739–7743.

[14]
Chen, X. D.; Wang, C. L.; Wang, Y. H.; Ma, J.; Dong, Y. J.; Gao, S.; Jing, Q. L.; Li, W. T.; Pang, H. In-situ immobilization cobalt-based metal-organic frameworks nanosheets on carbon composites for supercapacitors. J. Energy Storage 2022, 55, 105319.
[15]

Liu, Y.; Fang, Y. J.; Zhao, Z. W.; Yuan, C. Z.; Lou, X. W. A ternary Fe1−xS@porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries. Adv. Energy Mater. 2019, 9, 1803052.

[16]

Fang, Y. J.; Luan, D. Y.; Gao, S. Y.; Lou, X. W. Rational design and engineering of one-dimensional hollow nanostructures for efficient electrochemical energy storage. Angew. Chem., Int. Ed. 2021, 60, 20102–20118.

[17]

Zhou, X. F.; Liu, F. F.; Wang, Y. J.; Yao, Y.; Shao, Y.; Rui, X. H.; Wu, F. X.; Yu, Y. Heterogeneous interfacial layers derived from the in situ reaction of CoF2 nanoparticles with sodium metal for dendrite-free Na metal anodes. Adv. Energy Mater. 2022, 12, 2202323.

[18]
Chen, T. T.; Wang, F. F.; Cao, S.; Bai, Y.; Zheng, S. S.; Li, W. T.; Zhang, S. T.; Hu, S. X.; Pang, H. In situ synthesis of MOF-74 family for high areal energy density of aqueous nickel-zinc batteries. Adv. Mater. 2022, 34, 2201779.
[19]

Liu, C. L.; Bai, Y.; Wang, J.; Qiu, Z. M.; Pang, H. Controllable synthesis of ultrathin layered transition metal hydroxide/zeolitic imidazolate framework-67 hybrid nanosheets for high-performance supercapacitors. J. Mater. Chem. A 2021, 9, 11201–11209.

[20]

Xie, X. Q.; Makaryan, T.; Zhao, M. Q.; Van Aken, K. L.; Gogotsi, Y.; Wang, G. X. MoS2 nanosheets vertically aligned on carbon paper: A freestanding electrode for highly reversible sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1502161.

[21]
Yang, C. H.; Ou, X.; Xiong, X. H.; Zheng, F. H.; Hu, R. Z.; Chen, Y.; Liu, M. L.; Huang, K. V5S8-graphite hybrid nanosheets as a high rate-capacity and stable anode material for sodium-ion batteries. Energy Environ. Sci. 2017, 10, 107–113.
[22]

Zhang, S. P.; Ling, F. X.; Wang, L. F.; Xu, R.; Ma, M. Z.; Cheng, X. L.; Bai, R. L.; Shao, Y.; Huang, H. J.; Li, D. J. et al. An open-ended Ni3S2-Co9S8 heterostructures nanocage anode with enhanced reaction kinetics for superior potassium-ion batteries. Adv. Mater. 2022, 34, 2201420.

[23]

Wang, S. B.; Fang, Y. J.; Wang, X.; Lou, X. W. Hierarchical microboxes constructed by SnS nanoplates coated with nitrogen-doped carbon for efficient sodium storage. Angew. Chem., Int. Ed. 2019, 58, 760–763.

[24]

Yu, D. X.; Li, M. L.; Yu, T.; Wang, C. Z.; Zeng, Y.; Hu, X. D.; Chen, G.; Yang, G. C.; Du, F. Nanotube-assembled pine-needle-like CuS as an effective energy booster for sodium-ion storage. J. Mater. Chem. A 2019, 7, 10619–10628.

[25]

Ding, W.; Wang, X.; Peng, H. F.; Hu, L. N. Electrochemical performance of the chalcopyrite CuFeS2 as cathode for lithium ion battery. Mater. Chem. Phys. 2013, 137, 872–876.

[26]

Zhou, J. H.; Jiang, F.; Li, S. J.; Xu, Z. J.; Sun, W.; Ji, X. B.; Yang, Y. CuFeS2 as an anode material with an enhanced electrochemical performance for lithium-ion batteries fabricated from natural ore chalcopyrite. J. Solid State Electrochem. 2019, 23, 1991–2000.

[27]

Zhang, Y.; Zhao, G. G.; Lv, X.; Tian, Y.; Yang, L.; Zou, G. Q.; Hou, H. S.; Zhao, H. B.; Ji, X. B. Exploration and size engineering from natural chalcopyrite to high-performance electrode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 6154–6165.

[28]

Moorthy, M.; Palraj, J.; Kannan, L.; Katlakunta, S.; Perumal, S. Structural, microstructural, magnetic, and thermoelectric properties of bulk and nanostructured n-type CuFeS2 chalcopyrite. Ceram. Int. 2022, 48, 29039–29048.

[29]

Eda, N.; Fujii, T.; Koshina, H.; Morita, A.; Ogawa, H.; Murakami, K. M. Effects of an additive material, CuFeS2, on Li/CuO battery performance. J. Power Sources 1987, 20, 119–126.

[30]

Wang, Y. H.; Li, X.; Zhang, Y. Y.; He, X. Y.; Zhao, J. B. Ether based electrolyte improves the performance of CuFeS2 spike-like nanorods as a novel anode for lithium storage. Electrochim. Acta 2015, 158, 368–373.

[31]

Wu, X. K.; Zhao, Y. R.; Yang, C. Q.; He, G. F. PVP-assisted synthesis of shape-controlled CuFeS2 nanocrystals for Li-ion batteries. J. Mater. Sci. 2015, 50, 4250–4257.

[32]

Liu, Y. H.; Li, M. L.; Zheng, Y. Y.; Lin, H. Z.; Wang, Z. Y.; Xin, W.; Wang, C. Z.; Du, F. Boosting potassium-storage performance via the functional design of a heterostructured Bi2S3@RGO composite. Nanoscale 2020, 12, 24394–24402.

[33]

Liu, X. Y.; Zheng, X. Y.; Qin, X.; Deng, Y.; Dai, Y. M.; Zhao, T.; Wang, Z. Q.; Yang, H.; Luo, W. Temperature-responsive solid-electrolyte-interphase enabling stable sodium metal batteries in a wide temperature range. Nano Energy 2022, 103, 107746.

[34]

Xia, Y.; Que, L. F.; Yu, F. D.; Deng, L.; Liang, Z. J.; Jiang, Y. S.; Sun, M. Y.; Zhao, L.; Wang, Z. B. Tailoring nitrogen terminals on MXene enables fast charging and stable cycling Na-ion batteries at low temperature. Nano-Micro Lett. 2022, 14, 143.

[35]

Li, J. B.; Li, Z. Q.; Tang, S. C.; Wang, T. Y.; Wang, K.; Pan, L. K.; Wang, C. Y. Sodium titanium phosphate nanocube decorated on tablet-like carbon for robust sodium storage performance at low temperature. J. Colloid Interface Sci. 2023, 629, 121–132.

[36]

Chen, P.; Yang, C.; Gao, P.; Chen, X. L.; Cheng, Y. J.; Liu, J. L.; Guo, K. K. Distinctive formation of bifunctional ZnCoS-rGO 3D hollow microsphere flowers with excellent energy storage performances. Chem. Mater. 2022, 34, 5896–5911.

[37]

Senkale, S.; Indris, S.; Etter, M.; Bensch, W. CuFeS2 as a very stable high-capacity anode material for sodium-ion batteries: A multimethod approach for elucidation of the complex reaction mechanisms during discharge and charge processes. ACS Appl. Mater. Interfaces 2021, 13, 26034–26045.

[38]

Zhang, M.; Hong, W.; Xue, R. N.; Li, L. Z.; Huang, G. B.; Xu, X. Y.; Gao, J. P.; Yan, J. Nitrogen/sulfur dual-doped reduced graphene oxide supported CuFeS2 as an efficient electrocatalyst for the oxygen reduction reaction. New J. Chem. 2018, 42, 2081–2088.

[39]

Guo, P. S.; Song, H. W.; Liu, Y. Y.; Wang, C. X. CuFeS2 quantum dots anchored in carbon frame: Superior lithium storage performance and the study of electrochemical mechanism. ACS Appl. Mater. Interfaces 2017, 9, 31752–31762.

[40]

Jiang, F.; Zhao, W. Q.; Zhang, L. M.; Tian, Y.; Gao, X.; Ge, P.; Sun, W.; Chang, X. H.; Ji, X. B. Unraveling the mechanism of Chalcopyrite’s superior performance for lithium storage. ACS Appl. Energy Mater. 2021, 4, 5086–5093.

[41]

Aliyev, Y. I.; Ilyasli, T. M.; Dashdemirov, A. O.; Allazov, M. R.; Trukhanov, A. V.; Asadov, Y. G.; Jabarov, S. H.; Dang, N. T. The structural and vibrational properties of Ni-doped chalcopyrite CuFeS2. J. Ovonic Res. 2018, 14, 165–169.

[42]

Wen, P. Y.; Lai, T. Y.; Wu, T.; Lin, Y. W. Hydrothermal and Co-precipitated synthesis of chalcopyrite for fenton-like degradation toward rhodamine B. Catalysts 2022, 12, 152.

[43]

Pu, X. J.; Zhao, D.; Fu, C. L.; Chen, Z. X.; Cao, S. N.; Wang, C. S.; Cao, Y. L. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew. Chem., Int. Ed. 2021, 60, 21310–21318.

[44]

Fleischmann, S.; Mitchell, J. B.; Wang, R. C.; Zhan, C.; Jiang, D. E.; Presser, V.; Augustyn, V. Pseudocapacitance: From fundamental understanding to high power energy storage materials. Chem. Rev. 2020, 120, 6738–6782.

[45]

Teo, L. P.; Buraidah, M. H.; Arof, A. K. Study on Li+ ion diffusion in Li2SnO3 anode material by CV and EIS techniques. Mol. Cryst. Liq. Cryst. 2020, 694, 117–130.

Nano Research
Pages 9407-9415
Cite this article:
Sun G, Lin H, Tian R, et al. Rational design and synthesis of nanosheets self-assembled hierarchical flower-ball-like CuFeS2 for boosted wide temperature sodium-ion batteries. Nano Research, 2023, 16(7): 9407-9415. https://doi.org/10.1007/s12274-023-5614-1
Topics:

1168

Views

16

Crossref

19

Web of Science

21

Scopus

1

CSCD

Altmetrics

Received: 21 December 2022
Revised: 15 February 2023
Accepted: 23 February 2023
Published: 15 April 2023
© Tsinghua University Press 2023
Return