Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Nano-structure designs with conductive networks have been demonstrated as an efficient strategy to boost sodium storage properties for transition metal sulfides. Herein, an exquisite nanosheets self-assembled hierarchical flower-ball-like CuFeS2 embedded into the reduced graphene oxide (RGO) nanosheet matrix (F-CuFeS2@RGO) is fabricated via a concise two-step solvothermal method. Such a well-designed architecture affords increased active reaction interfaces and enhanced mixed ionic/electronic conductivity. Meanwhile, the external RGO matrix can effectively alleviate the volume expansion and create a stable structure during long cycles. As a result, the composite material exhibits a high reversible capacity of 559 mAh·g−1 at 0.1 A·g−1, a superior rate capability of 455 mAh·g−1 at 5 A·g−1 and excellent cyclic stability with 96% capacity retention after 4800 cycles at 5 A·g−1, among the best in the state-of-the-art transition metal sulfide anodes. Especially, F-CuFeS2@RGO delivers outstanding low-temperature performances with a high capacity retention of 100% and 91% at −20 and −40 °C, respectively, over 200 cycles. The proposed hierarchical structure fabrication paves a new direction in the design of high-performance electrodes for all-temperature energy storage applications.
Delmas, C. Sodium and sodium-ion batteries: 50 years of research. Adv. Energy Mater. 2018, 8, 1703137.
Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013.
Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.
Liu, P.; Yi, H. T.; Chen, X. C.; Zhu, K. J.; Li, Z. P.; Sun, Z. Q.; Jiao, L. F. Hierarchical engineering for high-energy-oriented sodium-ion batteries. Acc. Mater. Res. 2022, 3, 672–684.
Lao, M. M.; Zhang, Y.; Luo, W. B.; Yan, Q. Y.; Sun, W. P.; Dou, S. X. Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 2017, 29, 1700622.
Ni, J. F.; Li, L.; Lu, J. Phosphorus: An anode of choice for sodium-ion batteries. ACS Energy Lett. 2018, 3, 1137–1144.
Zhang, T. Y.; Ran, F. Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery. Adv. Funct. Mater. 2021, 31, 2010041.
Fang, Y. J.; Luan, D. Y.; Lou, X. W. Recent advances on mixed metal sulfides for advanced sodium-ion batteries. Adv. Mater. 2020, 32, 2002976.
Zhang, L.; Wei, Z. X.; Yao, S. Y.; Gao, Y.; Jin, X.; Chen, G.; Shen, Z. X.; Du, F. Polymorph engineering for boosted volumetric Na-ion and Li-ion storage. Adv. Mater. 2021, 33, 2100210.
Shan, Y. Y.; Li, Y.; Pang, H. Applications of tin sulfide-based materials in lithium-ion batteries and sodium-ion batteries. Adv. Funct. Mater. 2020, 30, 2001298.
Ali, Z.; Zhang, T.; Asif, M.; Zhao, L. N.; Yu, Y.; Hou, Y. L. Transition metal chalcogenide anodes for sodium storage. Mater. Today 2020, 35, 131–167.
Geng, P. B.; Zheng, S. S.; Tang, H.; Zhu, R. M.; Zhang, L.; Cao, S.; Xue, H. G.; Pang, H. Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater. 2018, 8, 1703259.
Fang, Y. J.; Guan, B. Y.; Luan, D. Y.; Lou, X. W. Synthesis of CuS@CoS2 double-shelled nanoboxes with enhanced sodium storage properties. Angew. Chem., Int. Ed. 2019, 58, 7739–7743.
Liu, Y.; Fang, Y. J.; Zhao, Z. W.; Yuan, C. Z.; Lou, X. W. A ternary Fe1−xS@porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries. Adv. Energy Mater. 2019, 9, 1803052.
Fang, Y. J.; Luan, D. Y.; Gao, S. Y.; Lou, X. W. Rational design and engineering of one-dimensional hollow nanostructures for efficient electrochemical energy storage. Angew. Chem., Int. Ed. 2021, 60, 20102–20118.
Zhou, X. F.; Liu, F. F.; Wang, Y. J.; Yao, Y.; Shao, Y.; Rui, X. H.; Wu, F. X.; Yu, Y. Heterogeneous interfacial layers derived from the in situ reaction of CoF2 nanoparticles with sodium metal for dendrite-free Na metal anodes. Adv. Energy Mater. 2022, 12, 2202323.
Liu, C. L.; Bai, Y.; Wang, J.; Qiu, Z. M.; Pang, H. Controllable synthesis of ultrathin layered transition metal hydroxide/zeolitic imidazolate framework-67 hybrid nanosheets for high-performance supercapacitors. J. Mater. Chem. A 2021, 9, 11201–11209.
Xie, X. Q.; Makaryan, T.; Zhao, M. Q.; Van Aken, K. L.; Gogotsi, Y.; Wang, G. X. MoS2 nanosheets vertically aligned on carbon paper: A freestanding electrode for highly reversible sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1502161.
Zhang, S. P.; Ling, F. X.; Wang, L. F.; Xu, R.; Ma, M. Z.; Cheng, X. L.; Bai, R. L.; Shao, Y.; Huang, H. J.; Li, D. J. et al. An open-ended Ni3S2-Co9S8 heterostructures nanocage anode with enhanced reaction kinetics for superior potassium-ion batteries. Adv. Mater. 2022, 34, 2201420.
Wang, S. B.; Fang, Y. J.; Wang, X.; Lou, X. W. Hierarchical microboxes constructed by SnS nanoplates coated with nitrogen-doped carbon for efficient sodium storage. Angew. Chem., Int. Ed. 2019, 58, 760–763.
Yu, D. X.; Li, M. L.; Yu, T.; Wang, C. Z.; Zeng, Y.; Hu, X. D.; Chen, G.; Yang, G. C.; Du, F. Nanotube-assembled pine-needle-like CuS as an effective energy booster for sodium-ion storage. J. Mater. Chem. A 2019, 7, 10619–10628.
Ding, W.; Wang, X.; Peng, H. F.; Hu, L. N. Electrochemical performance of the chalcopyrite CuFeS2 as cathode for lithium ion battery. Mater. Chem. Phys. 2013, 137, 872–876.
Zhou, J. H.; Jiang, F.; Li, S. J.; Xu, Z. J.; Sun, W.; Ji, X. B.; Yang, Y. CuFeS2 as an anode material with an enhanced electrochemical performance for lithium-ion batteries fabricated from natural ore chalcopyrite. J. Solid State Electrochem. 2019, 23, 1991–2000.
Zhang, Y.; Zhao, G. G.; Lv, X.; Tian, Y.; Yang, L.; Zou, G. Q.; Hou, H. S.; Zhao, H. B.; Ji, X. B. Exploration and size engineering from natural chalcopyrite to high-performance electrode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 6154–6165.
Moorthy, M.; Palraj, J.; Kannan, L.; Katlakunta, S.; Perumal, S. Structural, microstructural, magnetic, and thermoelectric properties of bulk and nanostructured n-type CuFeS2 chalcopyrite. Ceram. Int. 2022, 48, 29039–29048.
Eda, N.; Fujii, T.; Koshina, H.; Morita, A.; Ogawa, H.; Murakami, K. M. Effects of an additive material, CuFeS2, on Li/CuO battery performance. J. Power Sources 1987, 20, 119–126.
Wang, Y. H.; Li, X.; Zhang, Y. Y.; He, X. Y.; Zhao, J. B. Ether based electrolyte improves the performance of CuFeS2 spike-like nanorods as a novel anode for lithium storage. Electrochim. Acta 2015, 158, 368–373.
Wu, X. K.; Zhao, Y. R.; Yang, C. Q.; He, G. F. PVP-assisted synthesis of shape-controlled CuFeS2 nanocrystals for Li-ion batteries. J. Mater. Sci. 2015, 50, 4250–4257.
Liu, Y. H.; Li, M. L.; Zheng, Y. Y.; Lin, H. Z.; Wang, Z. Y.; Xin, W.; Wang, C. Z.; Du, F. Boosting potassium-storage performance via the functional design of a heterostructured Bi2S3@RGO composite. Nanoscale 2020, 12, 24394–24402.
Liu, X. Y.; Zheng, X. Y.; Qin, X.; Deng, Y.; Dai, Y. M.; Zhao, T.; Wang, Z. Q.; Yang, H.; Luo, W. Temperature-responsive solid-electrolyte-interphase enabling stable sodium metal batteries in a wide temperature range. Nano Energy 2022, 103, 107746.
Xia, Y.; Que, L. F.; Yu, F. D.; Deng, L.; Liang, Z. J.; Jiang, Y. S.; Sun, M. Y.; Zhao, L.; Wang, Z. B. Tailoring nitrogen terminals on MXene enables fast charging and stable cycling Na-ion batteries at low temperature. Nano-Micro Lett. 2022, 14, 143.
Li, J. B.; Li, Z. Q.; Tang, S. C.; Wang, T. Y.; Wang, K.; Pan, L. K.; Wang, C. Y. Sodium titanium phosphate nanocube decorated on tablet-like carbon for robust sodium storage performance at low temperature. J. Colloid Interface Sci. 2023, 629, 121–132.
Chen, P.; Yang, C.; Gao, P.; Chen, X. L.; Cheng, Y. J.; Liu, J. L.; Guo, K. K. Distinctive formation of bifunctional ZnCoS-rGO 3D hollow microsphere flowers with excellent energy storage performances. Chem. Mater. 2022, 34, 5896–5911.
Senkale, S.; Indris, S.; Etter, M.; Bensch, W. CuFeS2 as a very stable high-capacity anode material for sodium-ion batteries: A multimethod approach for elucidation of the complex reaction mechanisms during discharge and charge processes. ACS Appl. Mater. Interfaces 2021, 13, 26034–26045.
Zhang, M.; Hong, W.; Xue, R. N.; Li, L. Z.; Huang, G. B.; Xu, X. Y.; Gao, J. P.; Yan, J. Nitrogen/sulfur dual-doped reduced graphene oxide supported CuFeS2 as an efficient electrocatalyst for the oxygen reduction reaction. New J. Chem. 2018, 42, 2081–2088.
Guo, P. S.; Song, H. W.; Liu, Y. Y.; Wang, C. X. CuFeS2 quantum dots anchored in carbon frame: Superior lithium storage performance and the study of electrochemical mechanism. ACS Appl. Mater. Interfaces 2017, 9, 31752–31762.
Jiang, F.; Zhao, W. Q.; Zhang, L. M.; Tian, Y.; Gao, X.; Ge, P.; Sun, W.; Chang, X. H.; Ji, X. B. Unraveling the mechanism of Chalcopyrite’s superior performance for lithium storage. ACS Appl. Energy Mater. 2021, 4, 5086–5093.
Aliyev, Y. I.; Ilyasli, T. M.; Dashdemirov, A. O.; Allazov, M. R.; Trukhanov, A. V.; Asadov, Y. G.; Jabarov, S. H.; Dang, N. T. The structural and vibrational properties of Ni-doped chalcopyrite CuFeS2. J. Ovonic Res. 2018, 14, 165–169.
Wen, P. Y.; Lai, T. Y.; Wu, T.; Lin, Y. W. Hydrothermal and Co-precipitated synthesis of chalcopyrite for fenton-like degradation toward rhodamine B. Catalysts 2022, 12, 152.
Pu, X. J.; Zhao, D.; Fu, C. L.; Chen, Z. X.; Cao, S. N.; Wang, C. S.; Cao, Y. L. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew. Chem., Int. Ed. 2021, 60, 21310–21318.
Fleischmann, S.; Mitchell, J. B.; Wang, R. C.; Zhan, C.; Jiang, D. E.; Presser, V.; Augustyn, V. Pseudocapacitance: From fundamental understanding to high power energy storage materials. Chem. Rev. 2020, 120, 6738–6782.
Teo, L. P.; Buraidah, M. H.; Arof, A. K. Study on Li+ ion diffusion in Li2SnO3 anode material by CV and EIS techniques. Mol. Cryst. Liq. Cryst. 2020, 694, 117–130.