AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Optimizing electronic structure of NiFe LDH with Mn-doping and Fe0.64Ni0.36 alloy for alkaline water oxidation under industrial current density

Yang Qian1Fan Zhang1Lingshu Qiu1Weiwei Han1Zixu Zeng1Lecheng Lei1,2Yi He1Ping Li2Xingwang Zhang1,2( )
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
Institute of Zhejiang University-Quzhou, Quzhou 324000, China
Show Author Information

Graphical Abstract

A series of in situ grown Mn-NiFe lactate dehydrogenase (LDH) nanosheet arrays were fabricated on the Fe0.64Ni0.36/NM (nickel mesh) alloy layer. Optimization of the electronic structure induced by Mn doping and the alloy layer introduction led to enhanced oxygen evolution reaction (OER) activity (η500 = 295 mV) and remarkable stability of Mn0.15-NiFe LDH/Fe0.64Ni0.36/NM.

Abstract

Alkaline electrolyzers for water splitting under the industrial current densities are always burdened with huge energy consumption due to the high overpotential and poor stability of the anode nanocatalysts for oxygen evolution reaction (OER). Inspired by the interfacial charge transfer for enhancing the performance, a series of in-situ grown interfacial Mn-NiFe lactate dehydrogenase (LDH) was designed on the Fe0.64Ni0.36/NM (nickel mesh) alloy layer. The optimized Mn0.15-NiFe LDH/Fe0.64Ni0.36/NM exhibited an ultralow overpotential of 295 mV to drive 500 mA·cm−2 and an incredible stability under large current density. The interfacial space and heteroatom doping synergistically triggered the electronic structure optimization to promote electron transfer and ensure the durability of the high-current reaction. Notably, the designed Mn0.15-NiFe LDH/Fe0.64Ni0.36/NM as an anode in an integral alkaline electrolyzer exhibited a cell voltage of 1.78 V at 500 mA·cm−2 with a stability of 366 h. Density functional theory (DFT) calculations further demonstrated the synergistic effect of alloy layer introduction and Mn doping could accelerate electron transfer and stabilize the charged active center to activate the NiFe LDH and reduce the OER energy barrier. Our work offers new insights into developing efficient self-supported catalysts for high-current alkaline water oxidation.

Electronic Supplementary Material

Download File(s)
12274_2023_5615_MOESM1_ESM.pdf (1.8 MB)

References

[1]

Zhang, X. Y.; Zhu, Y. R.; Chen, Y.; Dou, S. Y.; Chen, X. Y.; Dong, B.; Guo, B. Y.; Liu, D. P.; Liu, C. G.; Chai, Y. M. Hydrogen evolution under large-current-density based on fluorine-doped cobalt-iron phosphides. Chem. Eng. J. 2020, 399, 125831.

[2]

Staffell, I.; Scamman, D.; Abad, A. V.; Balcombe, P.; Dodds, P. E.; Ekins, P.; Shah, N.; Ward, K. R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491.

[3]

Fan, R. Y.; Xie, J. Y.; Liu, H. J.; Wang, H. Y.; Li, M. X.; Yu, N.; Luan, R. N.; Chai, Y. M.; Dong, B. Directional regulating dynamic equilibrium to continuously update electrocatalytic interface for oxygen evolution reaction. Chem. Eng. J. 2022, 431, 134040.

[4]

Garcés-Pineda, F. A.; Blasco-Ahicart, M.; Nieto-Castro, D.; López, N.; Galán-Mascarós, J. R. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 2019, 4, 519–525.

[5]

An, C. H.; Kang, W.; Deng, Q. B.; Hu, N. Pt and Te codoped ultrathin MoS2 nanosheets for enhanced hydrogen evolution reaction with wide pH range. Rare Met. 2022, 41, 378–384.

[6]

Hao, R.; Feng, Q. L.; Wang, X. J.; Zhang, Y. C.; Li, K. S. Morphology-controlled growth of large-area PtSe2 films for enhanced hydrogen evolution reaction. Rare Met. 2022, 41, 1314–1322.

[7]

Gao, R.; Yan, D. P. Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv. Energy Mater. 2020, 10, 1900954.

[8]
Ding, P.; Song, H. Q.; Chang, J. W.; Lu, S. Y. N-doped carbon dots coupled NiFe-LDH hybrids for robust electrocatalytic alkaline water and seawater oxidation. Nano Res. 2022, 15, 7063–7070.
[9]

Liu, C.; Qian, J.; Ye, Y. F.; Zhou, H.; Sun, C. J.; Sheehan, C.; Zhang, Z. Y.; Wan, G.; Liu, Y. S.; Guo, J. H. et al. Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nat. Catal. 2021, 4, 36–45.

[10]

Sun, W.; Zhou, Z. H.; Zaman, W. Q.; Cao, L. M.; Yang, J. Rational manipulation of IrO2 lattice strain on α-MnO2 nanorods as a highly efficient water-splitting catalyst. ACS Appl. Mater. Interfaces 2017, 9, 41855–41862.

[11]

Zhang, L. J.; Jang, H.; Liu, H. H.; Kim, M. G.; Yang, D. J.; Liu, S. G.; Liu, X. E.; Cho, J. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: A robust pH-universal oxygen evolution electrocatalyst. Angew. Chem., Int. Ed. 2021, 60, 18821–18829.

[12]

Chang, J. W.; Song, X. D.; Yu, C.; Yu, J. H.; Ding, Y. W.; Yao, C.; Zhao, Z. B.; Qiu, J. S. Hydrogen-bonding triggered assembly to configure hollow carbon nanosheets for highly efficient tri-iodide reduction. Adv. Funct. Mater. 2020, 30, 2006270.

[13]

Zhang, J. T.; Yu, L.; Chen, Y.; Lu, X. F.; Gao, S. Y.; Lou, X. W. Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction. Adv. Mater. 2020, 32, 1906432.

[14]
Lv, L.; Yang, Z. X.; Chen, K.; Wang, C. D.; Xiong, Y. J. 2D layered double hydroxides for oxygen evolution reaction: From fundamental design to application. Adv. Energy Mater. 2019, 9, 1803358.
[15]

Feng, X. T.; Jiao, Q. Z.; Chen, W. X.; Dang, Y. L.; Dai, Z.; Suib, S. L.; Zhang, J. T.; Zhao, Y.; Li, H. S.; Feng, C. H. Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution. Appl. Catal. B:Environ. 2021, 286, 119869.

[16]

Chen, R.; Hung, S. F.; Zhou, D. J.; Gao, J. J.; Yang, C. J.; Tao, H. B.; Yang, H. B.; Zhang, L. P.; Zhang, L. L.; Xiong, Q. H. et al. Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv. Mater. 2019, 31, 1903909.

[17]

Hu, C. L.; Zhang, L.; Zhao, Z. J.; Li, A.; Chang, X. X.; Gong, J. L. Synergism of geometric construction and electronic regulation: 3D Se-(NiCo)Sx/(OH)x nanosheets for highly efficient overall water splitting. Adv. Mater. 2018, 30, 1705538.

[18]

Du, X. C.; Huang, J. W.; Zhang, J. J.; Yan, Y. C.; Wu, C. Y.; Hu, Y.; Yan, C. Y.; Lei, T. Y.; Chen, W.; Fan, C. et al. Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting. Angew. Chem., Int. Ed. 2019, 58, 4484–4502.

[19]

Gu, M. Z.; Deng, X. Y.; Lin, M.; Wang, H.; Gao, A.; Huang, X. M.; Zhang, X. J. Ultrathin NiCo bimetallic molybdate nanosheets coated CuOx nanotubes: Heterostructure and bimetallic synergistic optimization of the active site for highly efficient overall water splitting. Adv. Energy Mater. 2021, 11, 2102361.

[20]

Gao, X. R.; Li, X.; Yu, Y.; Kou, Z. K.; Wang, P. Y.; Liu, X. M.; Zhang, J.; He, J. Q.; Mu, S. C.; Wang, J. Synergizing aliovalent doping and interface in heterostructured NiV nitride@oxyhydroxide core–shell nanosheet arrays enables efficient oxygen evolution. Nano Energy 2021, 85, 105961.

[21]

Hu, J.; Al-Salihy, A.; Wang, J.; Li, X.; Fu, Y. F.; Li, Z. H.; Han, X. J.; Song, B.; Xu, P. Improved interface charge transfer and redistribution in CuO-CoOOH p-n heterojunction nanoarray electrocatalyst for enhanced oxygen evolution reaction. Adv. Sci. 2021, 8, 2103314.

[22]

Xue, Z. Q.; Li, X.; Liu, Q. L.; Cai, M. K.; Liu, K.; Liu, M.; Ke, Z. F.; Liu, X. L.; Li, G. Q. Interfacial electronic structure modulation of NiTe nanoarrays with NiS nanodots facilitates electrocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1900430.

[23]

Xiang, Q.; Li, F.; Chen, W. L.; Ma, Y. L.; Wu, Y.; Gu, X.; Qin, Y.; Tao, P.; Song, C. Y.; Shang, W. et al. In situ vertical growth of Fe-Ni layered double-hydroxide arrays on Fe-Ni alloy foil: Interfacial layer enhanced electrocatalyst with small overpotential for oxygen evolution reaction. ACS Energy Lett. 2018, 3, 2357–2365.

[24]

Zheng, Z. C.; Guo, Y. R.; Wan, H.; Chen, G.; Zhang, N.; Ma, W.; Liu, X. H.; Liang, S. Q.; Ma, R. Z. Anchoring active sites by Pt2FeNi alloy nanoparticles on NiFe layered double hydroxides for efficient electrocatalytic oxygen evolution reaction. Energy Environ. Mater. 2022, 5, 270–277.

[25]

Lim, W. Y.; Wu, H.; Lim, Y. F.; Ho, G. W. Facilitating the charge transfer of ZnMoS4/CuS p-n heterojunctions through ZnO intercalation for efficient photocatalytic hydrogen generation. J. Mater. Chem. A 2018, 6, 11416–11423.

[26]

Li, M.; Li, H.; Jiang, X. C.; Jiang, M. Q.; Zhan, X.; Fu, G. T.; Lee, J. M.; Tang, Y. W. Gd-induced electronic structure engineering of a NiFe-layered double hydroxide for efficient oxygen evolution. J. Mater. Chem. A 2021, 9, 2999–3006.

[27]

Zeng, Z. P.; Gan, L. Y.; Yang, H. B.; Su, X. Z.; Gao, J. J.; Liu, W.; Matsumoto, H.; Gong, J.; Zhang, J. M.; Cai, W. Z. et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 2021, 12, 4088.

[28]

Chang, J. W.; Yu, C.; Song, X. D.; Tan, X. Y.; Ding, Y. W.; Zhao, Z. B.; Qiu, J. S. A C-S-C linkage-triggered ultrahigh nitrogen-doped carbon and the identification of active site in triiodide reduction. Angew. Chem., Int. Ed. 2021, 60, 3587–3595.

[29]

Bi, Y. M.; Cai, Z.; Zhou, D. J.; Tian, Y.; Zhang, Q.; Zhang, Q.; Kuang, Y.; Li, Y. P.; Sun, X. M.; Duan, X. Understanding the incorporating effect of Co2+/Co3+ in NiFe-layered double hydroxide for electrocatalytic oxygen evolution reaction. J. Catal. 2018, 358, 100–107.

[30]

Luo, X.; Ji, P. X.; Wang, P. Y.; Cheng, R. L.; Chen, D.; Lin, C.; Zhang, J. A.; He, J. W.; Shi, Z. H.; Li, N. et al. Interface engineering of hierarchical branched Mo-doped Ni3S2/NixPy hollow heterostructure nanorods for efficient overall water splitting. Adv. Energy Mater. 2020, 10, 1903891.

[31]

Liu, Y.; Bai, L.; Li, T.; Huo, J. H.; Wang, X. F.; Zhang, L. F.; Hao, X. D.; Guo, S. W. Mn-doping tuned electron configuration and oxygen vacancies in NiO nanoparticles for stable electrocatalytic oxygen evolution reaction. Appl. Surf. Sci. 2022, 577, 151952.

[32]

Rao, R. R.; Corby, S.; Bucci, A.; García-Tecedor, M.; Mesa, C. A.; Rossmeisl, J.; Giménez, S.; Lloret-Fillol, J.; Stephens, I. E. L.; Durrant, J. R. Spectroelectrochemical analysis of the water oxidation mechanism on doped nickel oxides. J. Am. Chem. Soc. 2022, 144, 7622–7633.

[33]

Zhang, Y.; Cheng, C. Q.; Kuai, C. G.; Sokaras, D.; Zheng, X. L.; Sainio, S.; Lin, F.; Dong, C. K.; Nordlund, D.; Du, X. W. Unveiling the critical role of the Mn dopant in a NiFe(OH)2 catalyst for water oxidation. J. Mater. Chem. A 2020, 8, 17471–17476.

[34]

Lu, Z. Y.; Qian, L.; Tian, Y.; Li, Y. P.; Sun, X. M.; Duan, X. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts. Chem. Commun. 2016, 52, 908–911.

[35]

Liu, Y. P.; Liang, X.; Gu, L.; Zhang, Y.; Li, G. D.; Zou, X. X.; Chen, J. S. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours. Nat. Commun. 2018, 9, 2609.

[36]

Wang, P. C.; Wan, L.; Lin, Y. Q.; Wang, B. G. NiFe hydroxide supported on hierarchically porous nickel mesh as a high-performance bifunctional electrocatalyst for water splitting at large current density. ChemSusChem 2019, 12, 4038–4045.

[37]

Wu, Y. T.; Wang, H.; Ji, S.; Tian, X. L.; Li, G. D.; Wang, X. Y.; Wang, R. F. Ultrastable NiFeOOH/NiFe/Ni electrocatalysts prepared by in-situ electro-oxidation for oxygen evolution reaction at large current density. Appl. Surf. Sci. 2021, 564, 150440.

[38]

Xiong, X. L.; You, C.; Liu, Z.; Asiri, A. M.; Sun, X. P. Co-doped CuO nanoarray: An efficient oxygen evolution reaction electrocatalyst with enhanced activity. ACS Sustain. Chem. Eng. 2018, 6, 2883–2887.

[39]

Yu, M.; Liu, R. L.; Liu, J. H.; Li, S. M.; Ma, Y. X. Polyhedral-like NiMn-layered double hydroxide/porous carbon as electrode for enhanced electrochemical performance supercapacitors. Small 2017, 13, 1702616.

[40]

Cao, Y.; Nyborg, L.; Jelvestam, U. XPS calibration study of thin-film nickel silicides. Surf. Interface Anal. 2009, 41, 471–483.

[41]

Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351–9355.

[42]

Dutta, S.; Indra, A.; Feng, Y.; Song, T.; Paik, U. Self-supported nickel iron layered double hydroxide-nickel selenide electrocatalyst for superior water splitting activity. ACS Appl. Mater. Interfaces 2017, 9, 33766–33774.

[43]

Qiu, Z.; Tai, C. W.; Niklasson, G. A.; Edvinsson, T. Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting. Energy Environ. Sci. 2019, 12, 572–581.

[44]

Jiang, J.; Sun, F. F.; Zhou, S.; Hu, W.; Zhang, H.; Dong, J. C.; Jiang, Z.; Zhao, J. J.; Li, J. F.; Yan, W. S. et al. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide. Nat. Commun. 2018, 9, 2885.

[45]

Ye, Z. G.; Li, T.; Ma, G.; Dong, Y. H.; Zhou, X. L. Metal-ion (Fe, V, Co, and Ni)-doped MnO2 ultrathin nanosheets supported on carbon fiber paper for the oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1704083.

[46]

Du, S. C.; Ren, Z. Y.; Wang, X. L.; Wu, J.; Meng, H. Y.; Fu, H. G. Controlled atmosphere corrosion engineering toward inhomogeneous NiFe-LDH for energetic oxygen evolution. ACS Nano 2022, 16, 7794–7803.

[47]

Wang, X. Y.; Tuo, Y. X.; Zhou, Y.; Wang, D.; Wang, S. T.; Zhang, J. Ta-doping triggered electronic structural engineering and strain effect in NiFe LDH for enhanced water oxidation. Chem. Eng. J. 2021, 403, 126297.

[48]

Yu, F. F.; Bo, S. W.; Zhang, X. X.; Su, H.; Liu, M. H.; Zhou, W. L.; Sun, X.; Xu, Y. Z.; Zhang, H.; Yu, F. et al. Valence-modified selenospinels as ampere-current-bearing oxygen evolution catalysts. Appl. Catal. B:Environ. 2022, 316, 121649.

[49]

Zhuang, L. H.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.

[50]

Zhou, P.; Lv, X. S.; Xing, D. N.; Ma, F. H.; Liu, Y. Y.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Dai, Y.; Huang, B. B. High-efficient electrocatalytic overall water splitting over vanadium doped hexagonal Ni0.2Mo0.8N. Appl. Catal. B:Environ. 2020, 263, 118330.

[51]

Chen, D.; Pu, Z. H.; Lu, R. H.; Ji, P. X.; Wang, P. Y.; Zhu, J. W.; Lin, C.; Li, H. W.; Zhou, X. G.; Hu, Z. Y. et al. Ultralow Ru loading transition metal phosphides as high-efficient bifunctional electrocatalyst for a solar-to-hydrogen generation system. Adv. Energy Mater. 2020, 10, 2000814.

[52]

Song, F.; Bai, L. C.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. L. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc. 2018, 140, 7748–7759.

[53]

Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Mai, Y. J.; Wang, X. L.; Gu, C. D.; Zhao, X. B. Three-dimentional porous nano-Ni/Co(OH)2 nanoflake composite film: A pseudocapacitive material with superior performance. J. Phys. Chem. C 2011, 115, 22662–22668.

[54]

Mohammed-Ibrahim, J. A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction. J. Power Sources 2020, 448, 227375.

[55]

Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

[56]

Chang, J. W.; Yu, C.; Song, X. D.; Han, X. T.; Ding, Y. W.; Tan, X. Y.; Li, S. F.; Xie, Y. Y.; Zhao, Z. B.; Qiu, J. S. Mechanochemistry-driven prelinking enables ultrahigh nitrogen-doping in carbon materials for triiodide reduction. Nano Energy 2021, 89, 106332.

[57]

Sun, S. F.; Zhou, X.; Cong, B. W.; Hong, W. Z.; Chen, G. Tailoring the d-band centers endows (NixFe1-x)2P nanosheets with efficient oxygen evolution catalysis. ACS Catal. 2020, 10, 9086–9097.

[58]

Wang, Z. P.; Shen, S. J.; Lin, Z. P.; Tao, W. Y.; Zhang, Q. H.; Meng, F. Q.; Gu, L.; Zhong, W. W. Regulating the local spin state and band structure in Ni3S2 nanosheet for improved oxygen evolution activity. Adv. Funct. Mater. 2022, 32, 2112832.

[59]

Zhang, J. Q.; Zhao, Y. F.; Guo, X.; Chen, C.; Dong, C. L.; Liu, R. S.; Han, C. P.; Li, Y. D.; Gogotsi, Y.; Wang, G. X. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 2018, 1, 985–992.

Nano Research
Pages 8953-8960
Cite this article:
Qian Y, Zhang F, Qiu L, et al. Optimizing electronic structure of NiFe LDH with Mn-doping and Fe0.64Ni0.36 alloy for alkaline water oxidation under industrial current density. Nano Research, 2023, 16(7): 8953-8960. https://doi.org/10.1007/s12274-023-5615-0
Topics:

1024

Views

9

Crossref

10

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 30 December 2022
Revised: 15 February 2023
Accepted: 23 February 2023
Published: 15 April 2023
© Tsinghua University Press 2023
Return